Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379114557> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W4379114557 abstract "The performance of deep learning methods is heavily dependent on the quality of data representations. A simple model exploiting better data representation can outperform complicated. However, getting good data representations is not straightforward and is dependent on the application areas. In some scenarios such as multiple instance learning (MIL), objects have multiple representations available, but are lack of the proper way to utilize them. Some other problems, for example, few-shot learning (FSL), are naturally difficult in finding the most representative features to facilitate the model learning. In certain case as the tumor progression prediction, multiple complementary inputs yet with different characteristics and dimensions should be integrated for a better representation. Three novel methods of learning better representations are proposed for these problems. In MIL, the problem of predicting Twitter users’ demographics using tweets was considered. Each user was an object with labels and their tweets were instances. A deep neural network with a neural-attention mechanism was introduced. The model can learn the relevance of each individual tweet and make a prediction based on the selected relevant information. Experiment results shown that the proposed model outperformed other baseline models. To facilitate FSL, multi-level contrastive learning was proposed. It utilized the lower-level representation from CNN. Thus, an ensemble method was exploited, which created an en- semble of models, each taking a representation from a different layer of a CNN as input. Experiments shown that the ensemble achieved the new state-of-the-art results. Lastly, pre- dicting tumor progression was used by magnetic resonance imaging (MRI), hyperpolarized magnetic resonance imaging (HPMRI) and nuclear magnetic resonance (NMR) techniques, which produced three complementary types of data in different features. To integrate them, separate encoders for different types were built. 3D encoder and attention module were adopted for 3D MR images. The raw data of HPMRI is time series 2D signals, which were processed by 2D encoder and RNN. A deep neural network consisting of the encoders to generate representations was constructed. The final tumor progression prediction was made based on them. The experimental results shown that the model predicted tumor progression earlier than other approaches." @default.
- W4379114557 created "2023-06-03" @default.
- W4379114557 creator A5045397113 @default.
- W4379114557 date "2023-06-02" @default.
- W4379114557 modified "2023-09-27" @default.
- W4379114557 title "Learning Deep Representations to Improve Multi-Instance and Multi-Model Classifications" @default.
- W4379114557 doi "https://doi.org/10.31390/gradschool_dissertations.5851" @default.
- W4379114557 hasPublicationYear "2023" @default.
- W4379114557 type Work @default.
- W4379114557 citedByCount "0" @default.
- W4379114557 crossrefType "dissertation" @default.
- W4379114557 hasAuthorship W4379114557A5045397113 @default.
- W4379114557 hasConcept C108583219 @default.
- W4379114557 hasConcept C119857082 @default.
- W4379114557 hasConcept C154945302 @default.
- W4379114557 hasConcept C158154518 @default.
- W4379114557 hasConcept C17744445 @default.
- W4379114557 hasConcept C199539241 @default.
- W4379114557 hasConcept C2776359362 @default.
- W4379114557 hasConcept C2781238097 @default.
- W4379114557 hasConcept C41008148 @default.
- W4379114557 hasConcept C45942800 @default.
- W4379114557 hasConcept C50644808 @default.
- W4379114557 hasConcept C59404180 @default.
- W4379114557 hasConcept C94625758 @default.
- W4379114557 hasConceptScore W4379114557C108583219 @default.
- W4379114557 hasConceptScore W4379114557C119857082 @default.
- W4379114557 hasConceptScore W4379114557C154945302 @default.
- W4379114557 hasConceptScore W4379114557C158154518 @default.
- W4379114557 hasConceptScore W4379114557C17744445 @default.
- W4379114557 hasConceptScore W4379114557C199539241 @default.
- W4379114557 hasConceptScore W4379114557C2776359362 @default.
- W4379114557 hasConceptScore W4379114557C2781238097 @default.
- W4379114557 hasConceptScore W4379114557C41008148 @default.
- W4379114557 hasConceptScore W4379114557C45942800 @default.
- W4379114557 hasConceptScore W4379114557C50644808 @default.
- W4379114557 hasConceptScore W4379114557C59404180 @default.
- W4379114557 hasConceptScore W4379114557C94625758 @default.
- W4379114557 hasLocation W43791145571 @default.
- W4379114557 hasOpenAccess W4379114557 @default.
- W4379114557 hasPrimaryLocation W43791145571 @default.
- W4379114557 hasRelatedWork W2810053714 @default.
- W4379114557 hasRelatedWork W3136979370 @default.
- W4379114557 hasRelatedWork W3174221756 @default.
- W4379114557 hasRelatedWork W4223943233 @default.
- W4379114557 hasRelatedWork W4308112567 @default.
- W4379114557 hasRelatedWork W4312200629 @default.
- W4379114557 hasRelatedWork W4360585206 @default.
- W4379114557 hasRelatedWork W4364306694 @default.
- W4379114557 hasRelatedWork W4380075502 @default.
- W4379114557 hasRelatedWork W4380086463 @default.
- W4379114557 isParatext "false" @default.
- W4379114557 isRetracted "false" @default.
- W4379114557 workType "dissertation" @default.