Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379114927> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W4379114927 abstract "Effective connectivity, based on functional magnetic resonance imaging (fMRI) time series signals, is the quantification of how strongly brain activity in a certain source brain region contributes to brain activity in a target brain region, independent of the contributions of other source regions. Current methods to solve this problem have several limitations. They are either unable to model nonlinear relationships between source and target signals, unable to efficiently quantify time lags in source-target relationships, unable to identify time-varying relationships, or fail to account for variability in the hemodynamic response function that converts neuron activity to a measurable signal. In this dissertation we have proposed a series of deep learning methods to solve the above limitations. In Chapter 2, we have proposed a deep stacking network (DSN) architecture that characterizes conditional nonlinear effective connectivity among multiple time series while efficiently estimating time lags in those relationships. In Chapter 3, we extended the DSN architecture with adaptive convolutional kernels (ACK) to characterize time-varying nonlinear conditional effective connectivity with time-varying time lags. In Chapter 4, we applied the proposed DSN-ACK architecture to real-world task-based and resting-state fMRI from Bogalusa Heart Study participants to capture relevant aspects of brain health in a large epidemiological cohort. To overcome the key limitation that hemodynamic responses to neural events are not accounted for in effective connectivity analyses, in Chapter 5, we proposed a deep learning architecture to jointly estimate neural events and HRFs from task fMRI. The proposed deep learning methods can capture more information about brain connectivity than previous methods and the information it provides is relevant to brain health." @default.
- W4379114927 created "2023-06-03" @default.
- W4379114927 creator A5023474185 @default.
- W4379114927 date "2023-06-02" @default.
- W4379114927 modified "2023-09-27" @default.
- W4379114927 title "Effective Connectivity of Functional MRI via Deep Learning Methods" @default.
- W4379114927 doi "https://doi.org/10.31390/gradschool_dissertations.6059" @default.
- W4379114927 hasPublicationYear "2023" @default.
- W4379114927 type Work @default.
- W4379114927 citedByCount "0" @default.
- W4379114927 crossrefType "dissertation" @default.
- W4379114927 hasAuthorship W4379114927A5023474185 @default.
- W4379114927 hasConcept C108583219 @default.
- W4379114927 hasConcept C119857082 @default.
- W4379114927 hasConcept C127413603 @default.
- W4379114927 hasConcept C153180895 @default.
- W4379114927 hasConcept C154945302 @default.
- W4379114927 hasConcept C15744967 @default.
- W4379114927 hasConcept C169760540 @default.
- W4379114927 hasConcept C201995342 @default.
- W4379114927 hasConcept C2779226451 @default.
- W4379114927 hasConcept C2780451532 @default.
- W4379114927 hasConcept C41008148 @default.
- W4379114927 hasConcept C81363708 @default.
- W4379114927 hasConceptScore W4379114927C108583219 @default.
- W4379114927 hasConceptScore W4379114927C119857082 @default.
- W4379114927 hasConceptScore W4379114927C127413603 @default.
- W4379114927 hasConceptScore W4379114927C153180895 @default.
- W4379114927 hasConceptScore W4379114927C154945302 @default.
- W4379114927 hasConceptScore W4379114927C15744967 @default.
- W4379114927 hasConceptScore W4379114927C169760540 @default.
- W4379114927 hasConceptScore W4379114927C201995342 @default.
- W4379114927 hasConceptScore W4379114927C2779226451 @default.
- W4379114927 hasConceptScore W4379114927C2780451532 @default.
- W4379114927 hasConceptScore W4379114927C41008148 @default.
- W4379114927 hasConceptScore W4379114927C81363708 @default.
- W4379114927 hasLocation W43791149271 @default.
- W4379114927 hasOpenAccess W4379114927 @default.
- W4379114927 hasPrimaryLocation W43791149271 @default.
- W4379114927 hasRelatedWork W2731899572 @default.
- W4379114927 hasRelatedWork W2999805992 @default.
- W4379114927 hasRelatedWork W3095983064 @default.
- W4379114927 hasRelatedWork W3116150086 @default.
- W4379114927 hasRelatedWork W3133861977 @default.
- W4379114927 hasRelatedWork W4200173597 @default.
- W4379114927 hasRelatedWork W4291897433 @default.
- W4379114927 hasRelatedWork W4312417841 @default.
- W4379114927 hasRelatedWork W4321369474 @default.
- W4379114927 hasRelatedWork W4380075502 @default.
- W4379114927 isParatext "false" @default.
- W4379114927 isRetracted "false" @default.
- W4379114927 workType "dissertation" @default.