Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379115280> ?p ?o ?g. }
- W4379115280 endingPage "126380" @default.
- W4379115280 startingPage "126380" @default.
- W4379115280 abstract "Small data volume and data imbalance often lead to statistical failure and seriously restrict the accuracy of data-driven models, which has become a bottleneck problem, needing to be solved, in small sample modeling. The data expansion method has become the main way to solve small sample modeling. However, the randomness in the process of virtual sample generation and combination leads to many invalid data, resulting in poor consistency between the expanded data and the original data. For this reason, this paper proposes a virtual sample generation method based on acceptable area and joint probability distribution sampling (APS-VSG) to limit the randomness in the data expansion method, reduce the proportion of invalid data, improve data consistency after expansion, and improve the accuracy of the data-driven model under the condition of small samples. Firstly, the concept of “compact range of interaction (CRI)” was proposed, which further limits the domain estimation range of data to approximate the valid area of the data. Secondly, the prior knowledge was used to improve mega-trend-diffusion (MTD), and the CRI is delineated according to the trend dispersion to obtain the acceptable area of the virtual data. Finally, a joint probability distribution was constructed based on the true values of small samples in the acceptable area, and data sampling was conducted based on the probability distribution to generate virtual data. The experimental results of standard function datasets show that the virtual samples generated by the proposed method can ensure validity of more than 85%. The experimental results of the NASA li-ion battery dataset show that, compared with Interpolation, Noise, MD-MTD, GAN, and GMM-VSG methods, the error of the data-driven model trained with virtual data generated by the proposed method is significantly reduced. Compared with GAN and GMM-VSG, MSE, RMSE, MAE, and MAPE are reduced by at least 19.3%, 10.6%, 15.4%, and 16.7%, respectively." @default.
- W4379115280 created "2023-06-03" @default.
- W4379115280 creator A5003025972 @default.
- W4379115280 creator A5014958783 @default.
- W4379115280 creator A5033962409 @default.
- W4379115280 creator A5042166345 @default.
- W4379115280 creator A5057951804 @default.
- W4379115280 creator A5069417259 @default.
- W4379115280 date "2023-09-01" @default.
- W4379115280 modified "2023-09-28" @default.
- W4379115280 title "A novel virtual sample generation method to improve the quality of data and the accuracy of data-driven models" @default.
- W4379115280 cites W1975457564 @default.
- W4379115280 cites W1982651196 @default.
- W4379115280 cites W2010354425 @default.
- W4379115280 cites W2011742363 @default.
- W4379115280 cites W2036045975 @default.
- W4379115280 cites W2068773963 @default.
- W4379115280 cites W2111406701 @default.
- W4379115280 cites W2124136621 @default.
- W4379115280 cites W2142197202 @default.
- W4379115280 cites W2160565393 @default.
- W4379115280 cites W3177278879 @default.
- W4379115280 cites W3185520686 @default.
- W4379115280 cites W3199153237 @default.
- W4379115280 cites W3200775191 @default.
- W4379115280 cites W3212684309 @default.
- W4379115280 cites W4225975221 @default.
- W4379115280 cites W4289878041 @default.
- W4379115280 cites W4317934946 @default.
- W4379115280 doi "https://doi.org/10.1016/j.neucom.2023.126380" @default.
- W4379115280 hasPublicationYear "2023" @default.
- W4379115280 type Work @default.
- W4379115280 citedByCount "0" @default.
- W4379115280 crossrefType "journal-article" @default.
- W4379115280 hasAuthorship W4379115280A5003025972 @default.
- W4379115280 hasAuthorship W4379115280A5014958783 @default.
- W4379115280 hasAuthorship W4379115280A5033962409 @default.
- W4379115280 hasAuthorship W4379115280A5042166345 @default.
- W4379115280 hasAuthorship W4379115280A5057951804 @default.
- W4379115280 hasAuthorship W4379115280A5069417259 @default.
- W4379115280 hasConcept C105795698 @default.
- W4379115280 hasConcept C106131492 @default.
- W4379115280 hasConcept C111919701 @default.
- W4379115280 hasConcept C11413529 @default.
- W4379115280 hasConcept C124101348 @default.
- W4379115280 hasConcept C125112378 @default.
- W4379115280 hasConcept C129848803 @default.
- W4379115280 hasConcept C140779682 @default.
- W4379115280 hasConcept C149635348 @default.
- W4379115280 hasConcept C154945302 @default.
- W4379115280 hasConcept C159985019 @default.
- W4379115280 hasConcept C162324750 @default.
- W4379115280 hasConcept C176217482 @default.
- W4379115280 hasConcept C185592680 @default.
- W4379115280 hasConcept C192562407 @default.
- W4379115280 hasConcept C198531522 @default.
- W4379115280 hasConcept C204323151 @default.
- W4379115280 hasConcept C21547014 @default.
- W4379115280 hasConcept C24756922 @default.
- W4379115280 hasConcept C2776436953 @default.
- W4379115280 hasConcept C2780513914 @default.
- W4379115280 hasConcept C31972630 @default.
- W4379115280 hasConcept C33923547 @default.
- W4379115280 hasConcept C41008148 @default.
- W4379115280 hasConcept C43617362 @default.
- W4379115280 hasConcept C93361087 @default.
- W4379115280 hasConceptScore W4379115280C105795698 @default.
- W4379115280 hasConceptScore W4379115280C106131492 @default.
- W4379115280 hasConceptScore W4379115280C111919701 @default.
- W4379115280 hasConceptScore W4379115280C11413529 @default.
- W4379115280 hasConceptScore W4379115280C124101348 @default.
- W4379115280 hasConceptScore W4379115280C125112378 @default.
- W4379115280 hasConceptScore W4379115280C129848803 @default.
- W4379115280 hasConceptScore W4379115280C140779682 @default.
- W4379115280 hasConceptScore W4379115280C149635348 @default.
- W4379115280 hasConceptScore W4379115280C154945302 @default.
- W4379115280 hasConceptScore W4379115280C159985019 @default.
- W4379115280 hasConceptScore W4379115280C162324750 @default.
- W4379115280 hasConceptScore W4379115280C176217482 @default.
- W4379115280 hasConceptScore W4379115280C185592680 @default.
- W4379115280 hasConceptScore W4379115280C192562407 @default.
- W4379115280 hasConceptScore W4379115280C198531522 @default.
- W4379115280 hasConceptScore W4379115280C204323151 @default.
- W4379115280 hasConceptScore W4379115280C21547014 @default.
- W4379115280 hasConceptScore W4379115280C24756922 @default.
- W4379115280 hasConceptScore W4379115280C2776436953 @default.
- W4379115280 hasConceptScore W4379115280C2780513914 @default.
- W4379115280 hasConceptScore W4379115280C31972630 @default.
- W4379115280 hasConceptScore W4379115280C33923547 @default.
- W4379115280 hasConceptScore W4379115280C41008148 @default.
- W4379115280 hasConceptScore W4379115280C43617362 @default.
- W4379115280 hasConceptScore W4379115280C93361087 @default.
- W4379115280 hasLocation W43791152801 @default.
- W4379115280 hasOpenAccess W4379115280 @default.
- W4379115280 hasPrimaryLocation W43791152801 @default.
- W4379115280 hasRelatedWork W1636258188 @default.
- W4379115280 hasRelatedWork W1979246953 @default.
- W4379115280 hasRelatedWork W1993731342 @default.