Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379142144> ?p ?o ?g. }
- W4379142144 endingPage "18584" @default.
- W4379142144 startingPage "18571" @default.
- W4379142144 abstract "The concept Internet of Things (IoT), which facilitates communication between linked devices, is relatively new. It refers to the next generation of the Internet. IoT supports healthcare and is essential to numerous applications for tracking medical services. By examining the pattern of observed parameters, the type of the disease can be anticipated. For people with a range of diseases, health professionals and technicians have developed an excellent system that employs commonly utilized techniques like wearable technology, wireless channels, and other remote equipment to give low-cost healthcare monitoring. Whether put in living areas or worn on the body, network-related sensors gather detailed data to evaluate the patient's physical and mental health. The main objective of this study is to examine the current e-health monitoring system using integrated systems. Automatically providing patients with a prescription based on their status is the main goal of the e-health monitoring system. The doctor can keep an eye on the patient's health without having to communicate with them. The purpose of the study is to examine how IoT technologies are applied in the medical industry and how they help to raise the bar of healthcare delivered by healthcare institutions. The study will also include the uses of IoT in the medical area, the degree to which it is used to enhance conventional practices in various health fields, and the degree to which IoT may raise the standard of healthcare services. The main contributions in this paper are as follows: (1) importing signals from wearable devices, extracting signals from non-signals, performing peak enhancement; (2) processing and analyzing the incoming signals; (3) proposing a new stress monitoring algorithm (SMA) using wearable sensors; (4) comparing between various ML algorithms; (5) the proposed stress monitoring algorithm (SMA) is composed of four main phases: (a) data acquisition phase, (b) data and signal processing phase, (c) prediction phase, and (d) model performance evaluation phase; and (6) grid search is used to find the optimal values for hyperparameters of SVM (C and gamma). From the findings, it is shown that random forest is best suited for this classification, with decision tree and XGBoost following closely behind." @default.
- W4379142144 created "2023-06-03" @default.
- W4379142144 creator A5001662644 @default.
- W4379142144 creator A5037222998 @default.
- W4379142144 date "2023-06-02" @default.
- W4379142144 modified "2023-09-30" @default.
- W4379142144 title "Stress monitoring using wearable sensors: IoT techniques in medical field" @default.
- W4379142144 cites W1550808135 @default.
- W4379142144 cites W2026891775 @default.
- W4379142144 cites W2116488983 @default.
- W4379142144 cites W2186331843 @default.
- W4379142144 cites W2368514363 @default.
- W4379142144 cites W2586732548 @default.
- W4379142144 cites W2726872669 @default.
- W4379142144 cites W2778378397 @default.
- W4379142144 cites W2811281937 @default.
- W4379142144 cites W2894771803 @default.
- W4379142144 cites W2913483555 @default.
- W4379142144 cites W2928726480 @default.
- W4379142144 cites W2941146140 @default.
- W4379142144 cites W2963993350 @default.
- W4379142144 cites W3003209267 @default.
- W4379142144 cites W3006104596 @default.
- W4379142144 cites W3011743853 @default.
- W4379142144 cites W3012490873 @default.
- W4379142144 cites W3022345324 @default.
- W4379142144 cites W3025798404 @default.
- W4379142144 cites W3099008678 @default.
- W4379142144 cites W3137041257 @default.
- W4379142144 cites W3137606323 @default.
- W4379142144 cites W3164720667 @default.
- W4379142144 cites W3193707194 @default.
- W4379142144 cites W3212724725 @default.
- W4379142144 cites W4206428338 @default.
- W4379142144 cites W4220653579 @default.
- W4379142144 cites W4224076313 @default.
- W4379142144 cites W4226326514 @default.
- W4379142144 cites W4229038863 @default.
- W4379142144 cites W4281621467 @default.
- W4379142144 cites W4288474802 @default.
- W4379142144 cites W4293335334 @default.
- W4379142144 cites W4302425308 @default.
- W4379142144 cites W4306160188 @default.
- W4379142144 cites W4311872428 @default.
- W4379142144 cites W4312085894 @default.
- W4379142144 cites W4312100216 @default.
- W4379142144 cites W4319019500 @default.
- W4379142144 cites W4320075841 @default.
- W4379142144 cites W4320523696 @default.
- W4379142144 cites W4363649814 @default.
- W4379142144 doi "https://doi.org/10.1007/s00521-023-08681-z" @default.
- W4379142144 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37362562" @default.
- W4379142144 hasPublicationYear "2023" @default.
- W4379142144 type Work @default.
- W4379142144 citedByCount "2" @default.
- W4379142144 countsByYear W43791421442023 @default.
- W4379142144 crossrefType "journal-article" @default.
- W4379142144 hasAuthorship W4379142144A5001662644 @default.
- W4379142144 hasAuthorship W4379142144A5037222998 @default.
- W4379142144 hasBestOaLocation W43791421441 @default.
- W4379142144 hasConcept C108827166 @default.
- W4379142144 hasConcept C149635348 @default.
- W4379142144 hasConcept C150594956 @default.
- W4379142144 hasConcept C160735492 @default.
- W4379142144 hasConcept C162324750 @default.
- W4379142144 hasConcept C202444582 @default.
- W4379142144 hasConcept C24590314 @default.
- W4379142144 hasConcept C31258907 @default.
- W4379142144 hasConcept C33923547 @default.
- W4379142144 hasConcept C38652104 @default.
- W4379142144 hasConcept C41008148 @default.
- W4379142144 hasConcept C50522688 @default.
- W4379142144 hasConcept C54290928 @default.
- W4379142144 hasConcept C81860439 @default.
- W4379142144 hasConcept C9652623 @default.
- W4379142144 hasConceptScore W4379142144C108827166 @default.
- W4379142144 hasConceptScore W4379142144C149635348 @default.
- W4379142144 hasConceptScore W4379142144C150594956 @default.
- W4379142144 hasConceptScore W4379142144C160735492 @default.
- W4379142144 hasConceptScore W4379142144C162324750 @default.
- W4379142144 hasConceptScore W4379142144C202444582 @default.
- W4379142144 hasConceptScore W4379142144C24590314 @default.
- W4379142144 hasConceptScore W4379142144C31258907 @default.
- W4379142144 hasConceptScore W4379142144C33923547 @default.
- W4379142144 hasConceptScore W4379142144C38652104 @default.
- W4379142144 hasConceptScore W4379142144C41008148 @default.
- W4379142144 hasConceptScore W4379142144C50522688 @default.
- W4379142144 hasConceptScore W4379142144C54290928 @default.
- W4379142144 hasConceptScore W4379142144C81860439 @default.
- W4379142144 hasConceptScore W4379142144C9652623 @default.
- W4379142144 hasIssue "25" @default.
- W4379142144 hasLocation W43791421441 @default.
- W4379142144 hasLocation W43791421442 @default.
- W4379142144 hasLocation W43791421443 @default.
- W4379142144 hasOpenAccess W4379142144 @default.
- W4379142144 hasPrimaryLocation W43791421441 @default.
- W4379142144 hasRelatedWork W2311668763 @default.
- W4379142144 hasRelatedWork W2999098291 @default.