Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379142891> ?p ?o ?g. }
- W4379142891 abstract "<sec> <title>BACKGROUND</title> Construction and nursing are critical industries within New South Wales and Australia. Though both careers involve physically and mentally demanding work, the risks to workers during the pandemic are not well understood. In prior work, we have shown that nurses (both younger and older) were more likely to suffer the ill effects of burnout and stress than construction workers. This seems likely linked to accelerated work demands and increased pressure on nurses during the COVID-19 pandemic. Here, we subjected a large social media dataset to a series of advanced natural language processing techniques in order to explore indicators of mental status across industries before and during the COVID-19 pandemic. </sec> <sec> <title>OBJECTIVE</title> This social media analysis fills an important knowledge gap by comparing the social media posts of younger and older construction workers and nurses in order to obtain an insight into any potential risks to their mental health due to work health and safety issues. </sec> <sec> <title>METHODS</title> We analysed 1,505,638 tweets published on Twitter by younger and older (<45 vs. >45 years of age) construction workers and nurses. The study period spanned 54 months, from January 2018 to June 2022, which equates to approximately 27 months before and 27 months after the World Health Organization declared COVID-19 a global pandemic on 11 March 2020. The tweets were analysed using big data analytics and computational linguistic analyses. </sec> <sec> <title>RESULTS</title> Text analyses revealed that nurses made greater use of hashtags and keywords (both monograms and bigrams) associated with burnout, health issues, and mental health compared to construction workers. COVID also had a huge effect on nurses, and this was especially pronounced for younger nurses. LIWC analyses showed that posts about health and wellbeing contained more first-person singular pronouns and affect words, and health-related tweets contained more affect words. Sentiment analyses revealed that, overall, nurses had a higher proportion of positive sentiment in their tweets than construction workers. However, this changed markedly in early 2020 as the positive and negative sentiment crossed over in the months leading up to the World Health Organization’s declaration of COVID-19 as a global pandemic. Since that time, negative sentiment dominated the tweets of nurses. No such crossover was observed in construction. </sec> <sec> <title>CONCLUSIONS</title> The social media analysis revealed that younger nurses had language use patterns consistent with someone suffering the ill effects of burnout and stress. Older construction workers had more negative sentiment than young workers, who were more focused on communicating about social and recreational activities rather than work matters. </sec>" @default.
- W4379142891 created "2023-06-03" @default.
- W4379142891 creator A5014028625 @default.
- W4379142891 creator A5015835651 @default.
- W4379142891 creator A5040535168 @default.
- W4379142891 creator A5076234654 @default.
- W4379142891 creator A5077991492 @default.
- W4379142891 creator A5089960054 @default.
- W4379142891 date "2023-05-29" @default.
- W4379142891 modified "2023-10-18" @default.
- W4379142891 title "Investigating health and wellbeing challenges facing an ageing workforce in the construction and nursing industries: Computational linguistic analysis of Twitter data (Preprint)" @default.
- W4379142891 cites W128477273 @default.
- W4379142891 cites W1910919210 @default.
- W4379142891 cites W1966828110 @default.
- W4379142891 cites W1975316036 @default.
- W4379142891 cites W2001295743 @default.
- W4379142891 cites W2117643870 @default.
- W4379142891 cites W2123442489 @default.
- W4379142891 cites W2125269912 @default.
- W4379142891 cites W2125968826 @default.
- W4379142891 cites W2142997506 @default.
- W4379142891 cites W2156413587 @default.
- W4379142891 cites W2159923678 @default.
- W4379142891 cites W2167272113 @default.
- W4379142891 cites W2212298497 @default.
- W4379142891 cites W2261956923 @default.
- W4379142891 cites W2588559651 @default.
- W4379142891 cites W2755222073 @default.
- W4379142891 cites W2886196122 @default.
- W4379142891 cites W2897757488 @default.
- W4379142891 cites W2922472366 @default.
- W4379142891 cites W2981262907 @default.
- W4379142891 cites W3010574983 @default.
- W4379142891 cites W3033898341 @default.
- W4379142891 cites W3037109418 @default.
- W4379142891 cites W3095316364 @default.
- W4379142891 cites W3112384793 @default.
- W4379142891 cites W3116683217 @default.
- W4379142891 cites W3120271389 @default.
- W4379142891 cites W3128407582 @default.
- W4379142891 cites W3186931810 @default.
- W4379142891 cites W3190297556 @default.
- W4379142891 cites W4213425661 @default.
- W4379142891 cites W4281697355 @default.
- W4379142891 doi "https://doi.org/10.2196/preprints.49450" @default.
- W4379142891 hasPublicationYear "2023" @default.
- W4379142891 type Work @default.
- W4379142891 citedByCount "0" @default.
- W4379142891 crossrefType "posted-content" @default.
- W4379142891 hasAuthorship W4379142891A5014028625 @default.
- W4379142891 hasAuthorship W4379142891A5015835651 @default.
- W4379142891 hasAuthorship W4379142891A5040535168 @default.
- W4379142891 hasAuthorship W4379142891A5076234654 @default.
- W4379142891 hasAuthorship W4379142891A5077991492 @default.
- W4379142891 hasAuthorship W4379142891A5089960054 @default.
- W4379142891 hasConcept C10138342 @default.
- W4379142891 hasConcept C118552586 @default.
- W4379142891 hasConcept C127413603 @default.
- W4379142891 hasConcept C134362201 @default.
- W4379142891 hasConcept C142724271 @default.
- W4379142891 hasConcept C144133560 @default.
- W4379142891 hasConcept C15744967 @default.
- W4379142891 hasConcept C159110408 @default.
- W4379142891 hasConcept C17744445 @default.
- W4379142891 hasConcept C182306322 @default.
- W4379142891 hasConcept C18762648 @default.
- W4379142891 hasConcept C199539241 @default.
- W4379142891 hasConcept C2522767166 @default.
- W4379142891 hasConcept C2778139618 @default.
- W4379142891 hasConcept C2779134260 @default.
- W4379142891 hasConcept C3008058167 @default.
- W4379142891 hasConcept C41008148 @default.
- W4379142891 hasConcept C518677369 @default.
- W4379142891 hasConcept C524204448 @default.
- W4379142891 hasConcept C71924100 @default.
- W4379142891 hasConcept C78519656 @default.
- W4379142891 hasConcept C79158427 @default.
- W4379142891 hasConcept C89623803 @default.
- W4379142891 hasConceptScore W4379142891C10138342 @default.
- W4379142891 hasConceptScore W4379142891C118552586 @default.
- W4379142891 hasConceptScore W4379142891C127413603 @default.
- W4379142891 hasConceptScore W4379142891C134362201 @default.
- W4379142891 hasConceptScore W4379142891C142724271 @default.
- W4379142891 hasConceptScore W4379142891C144133560 @default.
- W4379142891 hasConceptScore W4379142891C15744967 @default.
- W4379142891 hasConceptScore W4379142891C159110408 @default.
- W4379142891 hasConceptScore W4379142891C17744445 @default.
- W4379142891 hasConceptScore W4379142891C182306322 @default.
- W4379142891 hasConceptScore W4379142891C18762648 @default.
- W4379142891 hasConceptScore W4379142891C199539241 @default.
- W4379142891 hasConceptScore W4379142891C2522767166 @default.
- W4379142891 hasConceptScore W4379142891C2778139618 @default.
- W4379142891 hasConceptScore W4379142891C2779134260 @default.
- W4379142891 hasConceptScore W4379142891C3008058167 @default.
- W4379142891 hasConceptScore W4379142891C41008148 @default.
- W4379142891 hasConceptScore W4379142891C518677369 @default.
- W4379142891 hasConceptScore W4379142891C524204448 @default.
- W4379142891 hasConceptScore W4379142891C71924100 @default.
- W4379142891 hasConceptScore W4379142891C78519656 @default.
- W4379142891 hasConceptScore W4379142891C79158427 @default.