Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379165521> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4379165521 endingPage "621" @default.
- W4379165521 startingPage "615" @default.
- W4379165521 abstract "In shipbuilding, Pre-erection (PE) area block placement planning is one of the complex and time-consuming processes that require the ship launch schedule, locations of the deployed blocks, and the travel distance of the Goliath cranes and transporters. It takes several weeks even for human experts to produce a reasonable plan for block placement. In this paper, we develop an efficient and time-saving placement method by applying reinforcement learning (RL) in order to maximize the usage of PE field in shipbuilding environment. We created a batch simulation using digital twin for the environment of RL. To model shipyards, we used Unity 3D, a 3D game engine based on actual ship block data and shipyard data. To check the availability of black placement, first, from Unity 3D representation, we decide in which part of the PE area the given block can fit. Second, since the shape and size of the given block can widely vary, we use the convolution concept for the discretization of the placement information of PE area. We used this information as the state of our RL model. To capture the characteristics of the given state and promote the efficiency of our RL model, we use a CNN-based auto-encoder for our policy network. We designed the reward value for our RL model so that the travel distance of Goliath crane can be minimized. In our experiment, we showed that our RL agent performs better than human experts by about 15%." @default.
- W4379165521 created "2023-06-03" @default.
- W4379165521 creator A5007620776 @default.
- W4379165521 creator A5061271091 @default.
- W4379165521 date "2023-01-01" @default.
- W4379165521 modified "2023-09-28" @default.
- W4379165521 title "Solving Pre-erection Area Block Placement Problem Using Deep Reinforcement Learning" @default.
- W4379165521 cites W2100495367 @default.
- W4379165521 cites W2107726111 @default.
- W4379165521 cites W293580541 @default.
- W4379165521 cites W3171752851 @default.
- W4379165521 doi "https://doi.org/10.1007/978-981-99-1252-0_83" @default.
- W4379165521 hasPublicationYear "2023" @default.
- W4379165521 type Work @default.
- W4379165521 citedByCount "0" @default.
- W4379165521 crossrefType "book-chapter" @default.
- W4379165521 hasAuthorship W4379165521A5007620776 @default.
- W4379165521 hasAuthorship W4379165521A5061271091 @default.
- W4379165521 hasConcept C127413603 @default.
- W4379165521 hasConcept C134306372 @default.
- W4379165521 hasConcept C154945302 @default.
- W4379165521 hasConcept C166957645 @default.
- W4379165521 hasConcept C2524010 @default.
- W4379165521 hasConcept C2777210771 @default.
- W4379165521 hasConcept C33923547 @default.
- W4379165521 hasConcept C41008148 @default.
- W4379165521 hasConcept C42475967 @default.
- W4379165521 hasConcept C65542768 @default.
- W4379165521 hasConcept C73000952 @default.
- W4379165521 hasConcept C86154893 @default.
- W4379165521 hasConcept C95457728 @default.
- W4379165521 hasConcept C97541855 @default.
- W4379165521 hasConceptScore W4379165521C127413603 @default.
- W4379165521 hasConceptScore W4379165521C134306372 @default.
- W4379165521 hasConceptScore W4379165521C154945302 @default.
- W4379165521 hasConceptScore W4379165521C166957645 @default.
- W4379165521 hasConceptScore W4379165521C2524010 @default.
- W4379165521 hasConceptScore W4379165521C2777210771 @default.
- W4379165521 hasConceptScore W4379165521C33923547 @default.
- W4379165521 hasConceptScore W4379165521C41008148 @default.
- W4379165521 hasConceptScore W4379165521C42475967 @default.
- W4379165521 hasConceptScore W4379165521C65542768 @default.
- W4379165521 hasConceptScore W4379165521C73000952 @default.
- W4379165521 hasConceptScore W4379165521C86154893 @default.
- W4379165521 hasConceptScore W4379165521C95457728 @default.
- W4379165521 hasConceptScore W4379165521C97541855 @default.
- W4379165521 hasLocation W43791655211 @default.
- W4379165521 hasOpenAccess W4379165521 @default.
- W4379165521 hasPrimaryLocation W43791655211 @default.
- W4379165521 hasRelatedWork W2001155918 @default.
- W4379165521 hasRelatedWork W2085318289 @default.
- W4379165521 hasRelatedWork W2317343226 @default.
- W4379165521 hasRelatedWork W2369470824 @default.
- W4379165521 hasRelatedWork W2378234696 @default.
- W4379165521 hasRelatedWork W2386264251 @default.
- W4379165521 hasRelatedWork W2392448551 @default.
- W4379165521 hasRelatedWork W2403864388 @default.
- W4379165521 hasRelatedWork W2519040648 @default.
- W4379165521 hasRelatedWork W322208737 @default.
- W4379165521 isParatext "false" @default.
- W4379165521 isRetracted "false" @default.
- W4379165521 workType "book-chapter" @default.