Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379179078> ?p ?o ?g. }
- W4379179078 endingPage "3735" @default.
- W4379179078 startingPage "3725" @default.
- W4379179078 abstract "Central nervous system abnormalities in fetuses are fairly common, happening in 0.1% to 0.2% of live births and in 3% to 6% of stillbirths. So initial detection and categorization of fetal Brain abnormalities are critical. Manually detecting and segmenting fetal brain magnetic resonance imaging (MRI) could be time-consuming, and susceptible to interpreter experience. Artificial intelligence (AI) algorithms and machine learning approaches have a high potential for assisting in the early detection of these problems, improving the diagnosis process and follow-up procedures. The use of AI and machine learning techniques in fetal brain MRI was the subject of this narrative review paper. Using AI, anatomic fetal brain MRI processing has investigated models to predict specific landmarks and segmentation automatically. All gestation age weeks (17-38 wk) and different AI models (mainly Convolutional Neural Network and U-Net) have been used. Some models' accuracy achieved 95% and more. AI could help preprocess and post-process fetal images and reconstruct images. Also, AI can be used for gestational age prediction (with one-week accuracy), fetal brain extraction, fetal brain segmentation, and placenta detection. Some fetal brain linear measurements, such as Cerebral and Bone Biparietal Diameter, have been suggested. Classification of brain pathology was studied using diagonal quadratic discriminates analysis, K-nearest neighbor, random forest, naive Bayes, and radial basis function neural network classifiers. Deep learning methods will become more powerful as more large-scale, labeled datasets become available. Having shared fetal brain MRI datasets is crucial because there aren not many fetal brain pictures available. Also, physicians should be aware of AI's function in fetal brain MRI, particularly neuroradiologists, general radiologists, and perinatologists." @default.
- W4379179078 created "2023-06-03" @default.
- W4379179078 creator A5041638298 @default.
- W4379179078 creator A5042327623 @default.
- W4379179078 creator A5072381551 @default.
- W4379179078 creator A5073101952 @default.
- W4379179078 creator A5085708726 @default.
- W4379179078 creator A5091514149 @default.
- W4379179078 creator A5092076381 @default.
- W4379179078 creator A5092076382 @default.
- W4379179078 date "2023-06-06" @default.
- W4379179078 modified "2023-10-01" @default.
- W4379179078 title "Review of deep learning and artificial intelligence models in fetal brain magnetic resonance imaging" @default.
- W4379179078 cites W1494636597 @default.
- W4379179078 cites W1963037062 @default.
- W4379179078 cites W1974739728 @default.
- W4379179078 cites W1992998173 @default.
- W4379179078 cites W1995044939 @default.
- W4379179078 cites W2028158228 @default.
- W4379179078 cites W2034871524 @default.
- W4379179078 cites W2046105679 @default.
- W4379179078 cites W2127890285 @default.
- W4379179078 cites W2130048823 @default.
- W4379179078 cites W2277373815 @default.
- W4379179078 cites W2277643888 @default.
- W4379179078 cites W2295387564 @default.
- W4379179078 cites W2592929672 @default.
- W4379179078 cites W2605766009 @default.
- W4379179078 cites W2608353599 @default.
- W4379179078 cites W2621028221 @default.
- W4379179078 cites W2729876886 @default.
- W4379179078 cites W2733375200 @default.
- W4379179078 cites W2738776132 @default.
- W4379179078 cites W2754603457 @default.
- W4379179078 cites W2889615630 @default.
- W4379179078 cites W2906598409 @default.
- W4379179078 cites W2949461491 @default.
- W4379179078 cites W2961560364 @default.
- W4379179078 cites W2963542386 @default.
- W4379179078 cites W2967093682 @default.
- W4379179078 cites W2972888337 @default.
- W4379179078 cites W2977685912 @default.
- W4379179078 cites W2979448620 @default.
- W4379179078 cites W2979499124 @default.
- W4379179078 cites W2980131665 @default.
- W4379179078 cites W2989249732 @default.
- W4379179078 cites W2999749877 @default.
- W4379179078 cites W3011641445 @default.
- W4379179078 cites W3044457118 @default.
- W4379179078 cites W3098896577 @default.
- W4379179078 cites W3156138366 @default.
- W4379179078 cites W3159080478 @default.
- W4379179078 cites W3164909817 @default.
- W4379179078 cites W3167134271 @default.
- W4379179078 cites W3172421821 @default.
- W4379179078 cites W3177468972 @default.
- W4379179078 cites W3182781195 @default.
- W4379179078 cites W3202643217 @default.
- W4379179078 cites W3203080855 @default.
- W4379179078 cites W3204723588 @default.
- W4379179078 cites W4200279076 @default.
- W4379179078 cites W4210705802 @default.
- W4379179078 cites W4220685005 @default.
- W4379179078 cites W4225749838 @default.
- W4379179078 cites W4306247082 @default.
- W4379179078 cites W4308055694 @default.
- W4379179078 doi "https://doi.org/10.12998/wjcc.v11.i16.3725" @default.
- W4379179078 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37383127" @default.
- W4379179078 hasPublicationYear "2023" @default.
- W4379179078 type Work @default.
- W4379179078 citedByCount "2" @default.
- W4379179078 countsByYear W43791790782023 @default.
- W4379179078 crossrefType "journal-article" @default.
- W4379179078 hasAuthorship W4379179078A5041638298 @default.
- W4379179078 hasAuthorship W4379179078A5042327623 @default.
- W4379179078 hasAuthorship W4379179078A5072381551 @default.
- W4379179078 hasAuthorship W4379179078A5073101952 @default.
- W4379179078 hasAuthorship W4379179078A5085708726 @default.
- W4379179078 hasAuthorship W4379179078A5091514149 @default.
- W4379179078 hasAuthorship W4379179078A5092076381 @default.
- W4379179078 hasAuthorship W4379179078A5092076382 @default.
- W4379179078 hasBestOaLocation W43791790781 @default.
- W4379179078 hasConcept C108583219 @default.
- W4379179078 hasConcept C119857082 @default.
- W4379179078 hasConcept C126838900 @default.
- W4379179078 hasConcept C143409427 @default.
- W4379179078 hasConcept C153180895 @default.
- W4379179078 hasConcept C154945302 @default.
- W4379179078 hasConcept C41008148 @default.
- W4379179078 hasConcept C50644808 @default.
- W4379179078 hasConcept C71924100 @default.
- W4379179078 hasConcept C81363708 @default.
- W4379179078 hasConcept C89600930 @default.
- W4379179078 hasConceptScore W4379179078C108583219 @default.
- W4379179078 hasConceptScore W4379179078C119857082 @default.
- W4379179078 hasConceptScore W4379179078C126838900 @default.
- W4379179078 hasConceptScore W4379179078C143409427 @default.
- W4379179078 hasConceptScore W4379179078C153180895 @default.