Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379196976> ?p ?o ?g. }
- W4379196976 endingPage "129736" @default.
- W4379196976 startingPage "129736" @default.
- W4379196976 abstract "Accurate, reliable, and stable streamflow forecasts are essential for risk assessment and decision making in water resources management. Owing to the limited value of deterministic forecasting, probabilistic forecasting incorporating probability and confidence intervals is achieved by optimizing the predictors and forecast equation while identifying forecast error features. The combination of deterministic forecasts and error identification can facilitate water resources management. This study improved the traditional forecast model’s inputs selection, structure designation, and error parameters calibration to propose a long-term probabilistic streamflow forecast model with hierarchical optimization of the predictors, forecast equation, and errors characteristics. The model develops information entropy theory to screen the driving predictor set, the long short-term memory (LSTM) model to conduct deterministic forecasts, and the generalized autoregressive conditional heteroskedasticity (GARCH) model to identify time-varying errors. The proposed model, used in some case studies to forecast the monthly streamflow of two lakes, Hongze and Luoma lakes in China, was evaluated using the multidimensional index method considering “accuracy–reliability–stability” performance. The results revealed the following: (1) Predictor screening based on information entropy investigates the statistical characteristics of predictors, thereby improving the reliability of streamflow forecasts. (2) The LSTM model exploits the response between the driving predictors and streamflow, whereas GARCH model identifies the time-varying features of forecast errors effectively, which reduces the probability of forecast failure and increases the accuracy and stability of probabilistic forecasts. (3) Under current meteorological observation conditions and forecasting capability, the proposed forecasts can extend the maximum forecast lead time from 1 month to 3 months. (4) The proposed model improves the accuracy (root mean square error: 6.7%–34.8%), reliability (Brier score: 15.3%–27.9%), and stability (mistaken distance: 36.4–52.6%) in comparison with the benchmark of the two case studies, indicating that “inputs–structure–parameters” hierarchical optimization provides effective forecast information for water resources management." @default.
- W4379196976 created "2023-06-04" @default.
- W4379196976 creator A5002193108 @default.
- W4379196976 creator A5002700038 @default.
- W4379196976 creator A5011057377 @default.
- W4379196976 creator A5022879772 @default.
- W4379196976 creator A5039231743 @default.
- W4379196976 creator A5048149397 @default.
- W4379196976 creator A5054452844 @default.
- W4379196976 creator A5067368540 @default.
- W4379196976 creator A5068954942 @default.
- W4379196976 creator A5077877575 @default.
- W4379196976 date "2023-07-01" @default.
- W4379196976 modified "2023-09-27" @default.
- W4379196976 title "Long-term probabilistic streamflow forecast model with “inputs–structure–parameters” hierarchical optimization framework" @default.
- W4379196976 cites W1652191876 @default.
- W4379196976 cites W1883380602 @default.
- W4379196976 cites W1960438638 @default.
- W4379196976 cites W1969226140 @default.
- W4379196976 cites W1973048907 @default.
- W4379196976 cites W1983388828 @default.
- W4379196976 cites W1990779154 @default.
- W4379196976 cites W1992473913 @default.
- W4379196976 cites W2000087577 @default.
- W4379196976 cites W2004041476 @default.
- W4379196976 cites W2006099917 @default.
- W4379196976 cites W2007221293 @default.
- W4379196976 cites W2010094966 @default.
- W4379196976 cites W2014325697 @default.
- W4379196976 cites W2023240121 @default.
- W4379196976 cites W2046188839 @default.
- W4379196976 cites W2049413683 @default.
- W4379196976 cites W2050051610 @default.
- W4379196976 cites W2068673381 @default.
- W4379196976 cites W2092333634 @default.
- W4379196976 cites W2093233187 @default.
- W4379196976 cites W2099779069 @default.
- W4379196976 cites W2117319840 @default.
- W4379196976 cites W2136848157 @default.
- W4379196976 cites W2146353725 @default.
- W4379196976 cites W2146797658 @default.
- W4379196976 cites W2167223201 @default.
- W4379196976 cites W2303468042 @default.
- W4379196976 cites W2619756347 @default.
- W4379196976 cites W2782341753 @default.
- W4379196976 cites W2789100328 @default.
- W4379196976 cites W2789364533 @default.
- W4379196976 cites W2800819102 @default.
- W4379196976 cites W2903822576 @default.
- W4379196976 cites W2919115771 @default.
- W4379196976 cites W2963797212 @default.
- W4379196976 cites W2964235834 @default.
- W4379196976 cites W2997699993 @default.
- W4379196976 cites W2998268303 @default.
- W4379196976 cites W3012319822 @default.
- W4379196976 cites W3039824464 @default.
- W4379196976 cites W3091436908 @default.
- W4379196976 cites W3117645847 @default.
- W4379196976 cites W3120378141 @default.
- W4379196976 cites W3171927944 @default.
- W4379196976 cites W3176163117 @default.
- W4379196976 cites W3183951330 @default.
- W4379196976 cites W3195045950 @default.
- W4379196976 cites W3208641848 @default.
- W4379196976 cites W4200194218 @default.
- W4379196976 cites W4200306259 @default.
- W4379196976 cites W4207005383 @default.
- W4379196976 cites W4221051205 @default.
- W4379196976 cites W4285008315 @default.
- W4379196976 doi "https://doi.org/10.1016/j.jhydrol.2023.129736" @default.
- W4379196976 hasPublicationYear "2023" @default.
- W4379196976 type Work @default.
- W4379196976 citedByCount "1" @default.
- W4379196976 countsByYear W43791969762023 @default.
- W4379196976 crossrefType "journal-article" @default.
- W4379196976 hasAuthorship W4379196976A5002193108 @default.
- W4379196976 hasAuthorship W4379196976A5002700038 @default.
- W4379196976 hasAuthorship W4379196976A5011057377 @default.
- W4379196976 hasAuthorship W4379196976A5022879772 @default.
- W4379196976 hasAuthorship W4379196976A5039231743 @default.
- W4379196976 hasAuthorship W4379196976A5048149397 @default.
- W4379196976 hasAuthorship W4379196976A5054452844 @default.
- W4379196976 hasAuthorship W4379196976A5067368540 @default.
- W4379196976 hasAuthorship W4379196976A5068954942 @default.
- W4379196976 hasAuthorship W4379196976A5077877575 @default.
- W4379196976 hasConcept C101104100 @default.
- W4379196976 hasConcept C105795698 @default.
- W4379196976 hasConcept C107054158 @default.
- W4379196976 hasConcept C112972136 @default.
- W4379196976 hasConcept C119857082 @default.
- W4379196976 hasConcept C120954023 @default.
- W4379196976 hasConcept C121332964 @default.
- W4379196976 hasConcept C122282355 @default.
- W4379196976 hasConcept C126645576 @default.
- W4379196976 hasConcept C140178040 @default.
- W4379196976 hasConcept C149782125 @default.
- W4379196976 hasConcept C153294291 @default.
- W4379196976 hasConcept C154945302 @default.