Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379197243> ?p ?o ?g. }
- W4379197243 abstract "Although the presence of intermediate snails is a necessary condition for local schistosomiasis transmission to occur, using them as surveillance targets in areas approaching elimination is challenging because the patchy and dynamic quality of snail host habitats makes collecting and testing snails labor-intensive. Meanwhile, geospatial analyses that rely on remotely sensed data are becoming popular tools for identifying environmental conditions that contribute to pathogen emergence and persistence.In this study, we assessed whether open-source environmental data can be used to predict the presence of human Schistosoma japonicum infections among households with a similar or improved degree of accuracy compared to prediction models developed using data from comprehensive snail surveys. To do this, we used infection data collected from rural communities in Southwestern China in 2016 to develop and compare the predictive performance of two Random Forest machine learning models: one built using snail survey data, and one using open-source environmental data.The environmental data models outperformed the snail data models in predicting household S. japonicum infection with an estimated accuracy and Cohen's kappa value of 0.89 and 0.49, respectively, in the environmental model, compared to an accuracy and kappa of 0.86 and 0.37 for the snail model. The Normalized Difference in Water Index (an indicator of surface water presence) within half to one kilometer of the home and the distance from the home to the nearest road were among the top performing predictors in our final model. Homes were more likely to have infected residents if they were further from roads, or nearer to waterways.Our results suggest that in low-transmission environments, leveraging open-source environmental data can yield more accurate identification of pockets of human infection than using snail surveys. Furthermore, the variable importance measures from our models point to aspects of the local environment that may indicate increased risk of schistosomiasis. For example, households were more likely to have infected residents if they were further from roads or were surrounded by more surface water, highlighting areas to target in future surveillance and control efforts." @default.
- W4379197243 created "2023-06-04" @default.
- W4379197243 creator A5003108955 @default.
- W4379197243 creator A5005410467 @default.
- W4379197243 creator A5021927437 @default.
- W4379197243 creator A5031122186 @default.
- W4379197243 creator A5032244728 @default.
- W4379197243 creator A5041979470 @default.
- W4379197243 creator A5051213132 @default.
- W4379197243 creator A5075991046 @default.
- W4379197243 date "2023-06-02" @default.
- W4379197243 modified "2023-10-12" @default.
- W4379197243 title "Open-source environmental data as an alternative to snail surveys to assess schistosomiasis risk in areas approaching elimination" @default.
- W4379197243 cites W1507565303 @default.
- W4379197243 cites W1685317713 @default.
- W4379197243 cites W1917723944 @default.
- W4379197243 cites W1965820889 @default.
- W4379197243 cites W1976468356 @default.
- W4379197243 cites W1985869789 @default.
- W4379197243 cites W1997047262 @default.
- W4379197243 cites W2009447956 @default.
- W4379197243 cites W2012370748 @default.
- W4379197243 cites W2013738622 @default.
- W4379197243 cites W2015452969 @default.
- W4379197243 cites W2019419184 @default.
- W4379197243 cites W2038398663 @default.
- W4379197243 cites W2045804260 @default.
- W4379197243 cites W2077509829 @default.
- W4379197243 cites W2088920299 @default.
- W4379197243 cites W2110683883 @default.
- W4379197243 cites W2113410727 @default.
- W4379197243 cites W2127987851 @default.
- W4379197243 cites W2129210077 @default.
- W4379197243 cites W2134295474 @default.
- W4379197243 cites W2134463914 @default.
- W4379197243 cites W2136794299 @default.
- W4379197243 cites W2139832390 @default.
- W4379197243 cites W2141815566 @default.
- W4379197243 cites W2143481518 @default.
- W4379197243 cites W2149897070 @default.
- W4379197243 cites W2163193677 @default.
- W4379197243 cites W2164777277 @default.
- W4379197243 cites W2174806830 @default.
- W4379197243 cites W2185381800 @default.
- W4379197243 cites W2216946510 @default.
- W4379197243 cites W2547174299 @default.
- W4379197243 cites W2606779830 @default.
- W4379197243 cites W2744637967 @default.
- W4379197243 cites W2886530522 @default.
- W4379197243 cites W2894444192 @default.
- W4379197243 cites W2949116741 @default.
- W4379197243 cites W2953091533 @default.
- W4379197243 cites W2982339762 @default.
- W4379197243 cites W2991584852 @default.
- W4379197243 cites W2995383521 @default.
- W4379197243 cites W2996786562 @default.
- W4379197243 cites W3014317342 @default.
- W4379197243 cites W3016609738 @default.
- W4379197243 cites W3024139352 @default.
- W4379197243 cites W3028080691 @default.
- W4379197243 cites W3080865347 @default.
- W4379197243 cites W3092270481 @default.
- W4379197243 cites W3099614574 @default.
- W4379197243 cites W3102649829 @default.
- W4379197243 cites W3119249398 @default.
- W4379197243 cites W3127859352 @default.
- W4379197243 cites W3189297414 @default.
- W4379197243 cites W4200584257 @default.
- W4379197243 cites W4206620300 @default.
- W4379197243 cites W4211093028 @default.
- W4379197243 cites W4211128418 @default.
- W4379197243 cites W4239459962 @default.
- W4379197243 cites W4281550775 @default.
- W4379197243 cites W4281609819 @default.
- W4379197243 cites W4295095019 @default.
- W4379197243 doi "https://doi.org/10.1186/s12942-023-00331-w" @default.
- W4379197243 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37268933" @default.
- W4379197243 hasPublicationYear "2023" @default.
- W4379197243 type Work @default.
- W4379197243 citedByCount "0" @default.
- W4379197243 crossrefType "journal-article" @default.
- W4379197243 hasAuthorship W4379197243A5003108955 @default.
- W4379197243 hasAuthorship W4379197243A5005410467 @default.
- W4379197243 hasAuthorship W4379197243A5021927437 @default.
- W4379197243 hasAuthorship W4379197243A5031122186 @default.
- W4379197243 hasAuthorship W4379197243A5032244728 @default.
- W4379197243 hasAuthorship W4379197243A5041979470 @default.
- W4379197243 hasAuthorship W4379197243A5051213132 @default.
- W4379197243 hasAuthorship W4379197243A5075991046 @default.
- W4379197243 hasBestOaLocation W43791972431 @default.
- W4379197243 hasConcept C100970517 @default.
- W4379197243 hasConcept C105795698 @default.
- W4379197243 hasConcept C161584116 @default.
- W4379197243 hasConcept C165901193 @default.
- W4379197243 hasConcept C18903297 @default.
- W4379197243 hasConcept C205649164 @default.
- W4379197243 hasConcept C2776225656 @default.
- W4379197243 hasConcept C2776356880 @default.
- W4379197243 hasConcept C2779965526 @default.
- W4379197243 hasConcept C33923547 @default.