Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379231683> ?p ?o ?g. }
- W4379231683 endingPage "1698" @default.
- W4379231683 startingPage "1698" @default.
- W4379231683 abstract "This study investigates pneumatic conveying of four different biomass materials, namely cottonseeds, wood pellets, wood chips, and wheat straw. The performance of a previously proposed model for predicting pressure drop is evaluated using biomass materials. Results indicate that the model can predict pressure with an error range of 30 percent. To minimize the number of trial tests required, an optimization algorithm is proposed. The findings show that with a combination of three trial tests, there is a 60 percent probability of selecting the right subset for accurately predicting pressure drop for the entire range of tests. Further investigation of different training subsets suggests that increasing the number of tests from 3 to 7 can improve the probability from 60% to 90%. Moreover, thorough analysis of all three-element subsets in the entire series of tests reveals that when considering air mass flow rate as the input, having air mass flow rates that are not only closer in value but also lower increases the likelihood of selecting the correct subset for predicting pressure drop across the entire range. This advancement can help industries to design and optimize pneumatic conveying systems more effectively, leading to significant energy savings and improved operational performance." @default.
- W4379231683 created "2023-06-04" @default.
- W4379231683 creator A5003629920 @default.
- W4379231683 creator A5004278906 @default.
- W4379231683 creator A5013764564 @default.
- W4379231683 creator A5039784719 @default.
- W4379231683 creator A5049136818 @default.
- W4379231683 creator A5088828464 @default.
- W4379231683 creator A5090596565 @default.
- W4379231683 date "2023-06-02" @default.
- W4379231683 modified "2023-10-14" @default.
- W4379231683 title "Optimizing Pressure Prediction Models for Pneumatic Conveying of Biomass: A Comprehensive Approach to Minimize Trial Tests and Enhance Accuracy" @default.
- W4379231683 cites W1973498989 @default.
- W4379231683 cites W1976274307 @default.
- W4379231683 cites W1979563464 @default.
- W4379231683 cites W1979726188 @default.
- W4379231683 cites W1980368365 @default.
- W4379231683 cites W1980872367 @default.
- W4379231683 cites W1980966175 @default.
- W4379231683 cites W1981533068 @default.
- W4379231683 cites W1992368967 @default.
- W4379231683 cites W2018668573 @default.
- W4379231683 cites W2023335007 @default.
- W4379231683 cites W2026655345 @default.
- W4379231683 cites W2030261929 @default.
- W4379231683 cites W2032312987 @default.
- W4379231683 cites W2041656829 @default.
- W4379231683 cites W2042811062 @default.
- W4379231683 cites W2059952138 @default.
- W4379231683 cites W2083223848 @default.
- W4379231683 cites W2088930738 @default.
- W4379231683 cites W2094336610 @default.
- W4379231683 cites W2126452156 @default.
- W4379231683 cites W2462071536 @default.
- W4379231683 cites W2805186740 @default.
- W4379231683 cites W2937261978 @default.
- W4379231683 cites W2947437176 @default.
- W4379231683 cites W2972410611 @default.
- W4379231683 cites W2978274648 @default.
- W4379231683 cites W3008228226 @default.
- W4379231683 cites W3037069377 @default.
- W4379231683 cites W3099965734 @default.
- W4379231683 cites W3141463228 @default.
- W4379231683 cites W3159270975 @default.
- W4379231683 cites W3177259054 @default.
- W4379231683 cites W3192180527 @default.
- W4379231683 cites W4205538906 @default.
- W4379231683 cites W4251232167 @default.
- W4379231683 cites W4293509336 @default.
- W4379231683 cites W610076213 @default.
- W4379231683 doi "https://doi.org/10.3390/pr11061698" @default.
- W4379231683 hasPublicationYear "2023" @default.
- W4379231683 type Work @default.
- W4379231683 citedByCount "1" @default.
- W4379231683 countsByYear W43792316832023 @default.
- W4379231683 crossrefType "journal-article" @default.
- W4379231683 hasAuthorship W4379231683A5003629920 @default.
- W4379231683 hasAuthorship W4379231683A5004278906 @default.
- W4379231683 hasAuthorship W4379231683A5013764564 @default.
- W4379231683 hasAuthorship W4379231683A5039784719 @default.
- W4379231683 hasAuthorship W4379231683A5049136818 @default.
- W4379231683 hasAuthorship W4379231683A5088828464 @default.
- W4379231683 hasAuthorship W4379231683A5090596565 @default.
- W4379231683 hasBestOaLocation W43792316831 @default.
- W4379231683 hasConcept C105795698 @default.
- W4379231683 hasConcept C111368507 @default.
- W4379231683 hasConcept C114088122 @default.
- W4379231683 hasConcept C115540264 @default.
- W4379231683 hasConcept C121332964 @default.
- W4379231683 hasConcept C127313418 @default.
- W4379231683 hasConcept C127413603 @default.
- W4379231683 hasConcept C146978453 @default.
- W4379231683 hasConcept C159985019 @default.
- W4379231683 hasConcept C172120300 @default.
- W4379231683 hasConcept C192562407 @default.
- W4379231683 hasConcept C204323151 @default.
- W4379231683 hasConcept C2524010 @default.
- W4379231683 hasConcept C2779587293 @default.
- W4379231683 hasConcept C2780584874 @default.
- W4379231683 hasConcept C33923547 @default.
- W4379231683 hasConcept C38349280 @default.
- W4379231683 hasConcept C39432304 @default.
- W4379231683 hasConcept C41008148 @default.
- W4379231683 hasConcept C44154836 @default.
- W4379231683 hasConcept C57879066 @default.
- W4379231683 hasConcept C62520636 @default.
- W4379231683 hasConcept C75892298 @default.
- W4379231683 hasConceptScore W4379231683C105795698 @default.
- W4379231683 hasConceptScore W4379231683C111368507 @default.
- W4379231683 hasConceptScore W4379231683C114088122 @default.
- W4379231683 hasConceptScore W4379231683C115540264 @default.
- W4379231683 hasConceptScore W4379231683C121332964 @default.
- W4379231683 hasConceptScore W4379231683C127313418 @default.
- W4379231683 hasConceptScore W4379231683C127413603 @default.
- W4379231683 hasConceptScore W4379231683C146978453 @default.
- W4379231683 hasConceptScore W4379231683C159985019 @default.
- W4379231683 hasConceptScore W4379231683C172120300 @default.
- W4379231683 hasConceptScore W4379231683C192562407 @default.