Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379232347> ?p ?o ?g. }
- W4379232347 abstract "In order to explore the relationship between mammographic density of breast mass and its surrounding area and benign or malignant breast, this paper proposes a deep learning model based on C2FTrans to diagnose the breast mass using mammographic density.This retrospective study included patients who underwent mammographic and pathological examination. Two physicians manually depicted the lesion edges and used a computer to automatically extend and segment the peripheral areas of the lesion (0, 1, 3, and 5 mm, including the lesion). We then obtained the mammary glands' density and the different regions of interest (ROI). A diagnostic model for breast mass lesions based on C2FTrans was constructed based on a 7: 3 ratio between the training and testing sets. Finally, receiver operating characteristic (ROC) curves were plotted. Model performance was assessed using the area under the ROC curve (AUC) with 95% confidence intervals (CI), sensitivity, and specificity.In total, 401 lesions (158 benign and 243 malignant) were included in this study. The probability of breast cancer in women was positively correlated with age and mass density and negatively correlated with breast gland classification. The largest correlation was observed for age (r = 0.47). Among all models, the single mass ROI model had the highest specificity (91.8%) with an AUC = 0.823 and the perifocal 5mm ROI model had the highest sensitivity (86.9%) with an AUC = 0.855. In addition, by combining the cephalocaudal and mediolateral oblique views of the perifocal 5 mm ROI model, we obtained the highest AUC (AUC = 0.877 P < 0.001).Deep learning model of mammographic density can better distinguish benign and malignant mass-type lesions in digital mammography images and may become an auxiliary diagnostic tool for radiologists in the future." @default.
- W4379232347 created "2023-06-04" @default.
- W4379232347 creator A5023547621 @default.
- W4379232347 creator A5055229683 @default.
- W4379232347 creator A5062821149 @default.
- W4379232347 creator A5064320053 @default.
- W4379232347 creator A5081210891 @default.
- W4379232347 creator A5083443653 @default.
- W4379232347 date "2023-06-02" @default.
- W4379232347 modified "2023-09-26" @default.
- W4379232347 title "Diagnostic value of mammography density of breast masses by using deep learning" @default.
- W4379232347 cites W2076672259 @default.
- W4379232347 cites W2083296039 @default.
- W4379232347 cites W2100639855 @default.
- W4379232347 cites W2137778267 @default.
- W4379232347 cites W2287342701 @default.
- W4379232347 cites W2343456570 @default.
- W4379232347 cites W2573544252 @default.
- W4379232347 cites W2617669016 @default.
- W4379232347 cites W2767236661 @default.
- W4379232347 cites W2770397194 @default.
- W4379232347 cites W2790328053 @default.
- W4379232347 cites W2939142770 @default.
- W4379232347 cites W2985003253 @default.
- W4379232347 cites W2996253120 @default.
- W4379232347 cites W3012158104 @default.
- W4379232347 cites W3033243763 @default.
- W4379232347 cites W3035655244 @default.
- W4379232347 cites W3096265120 @default.
- W4379232347 cites W3098585799 @default.
- W4379232347 cites W3128646645 @default.
- W4379232347 cites W3157382340 @default.
- W4379232347 cites W3215296231 @default.
- W4379232347 cites W4210499118 @default.
- W4379232347 cites W4226173297 @default.
- W4379232347 cites W4283800130 @default.
- W4379232347 cites W4286437542 @default.
- W4379232347 cites W4290988268 @default.
- W4379232347 cites W4292869146 @default.
- W4379232347 cites W4294189863 @default.
- W4379232347 cites W4306316651 @default.
- W4379232347 doi "https://doi.org/10.3389/fonc.2023.1110657" @default.
- W4379232347 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37333830" @default.
- W4379232347 hasPublicationYear "2023" @default.
- W4379232347 type Work @default.
- W4379232347 citedByCount "0" @default.
- W4379232347 crossrefType "journal-article" @default.
- W4379232347 hasAuthorship W4379232347A5023547621 @default.
- W4379232347 hasAuthorship W4379232347A5055229683 @default.
- W4379232347 hasAuthorship W4379232347A5062821149 @default.
- W4379232347 hasAuthorship W4379232347A5064320053 @default.
- W4379232347 hasAuthorship W4379232347A5081210891 @default.
- W4379232347 hasAuthorship W4379232347A5083443653 @default.
- W4379232347 hasBestOaLocation W43792323471 @default.
- W4379232347 hasConcept C121608353 @default.
- W4379232347 hasConcept C126322002 @default.
- W4379232347 hasConcept C126838900 @default.
- W4379232347 hasConcept C142724271 @default.
- W4379232347 hasConcept C19609008 @default.
- W4379232347 hasConcept C2777432617 @default.
- W4379232347 hasConcept C2779098232 @default.
- W4379232347 hasConcept C2780472235 @default.
- W4379232347 hasConcept C2781156865 @default.
- W4379232347 hasConcept C2989005 @default.
- W4379232347 hasConcept C44249647 @default.
- W4379232347 hasConcept C530470458 @default.
- W4379232347 hasConcept C58471807 @default.
- W4379232347 hasConcept C71924100 @default.
- W4379232347 hasConcept C76318530 @default.
- W4379232347 hasConceptScore W4379232347C121608353 @default.
- W4379232347 hasConceptScore W4379232347C126322002 @default.
- W4379232347 hasConceptScore W4379232347C126838900 @default.
- W4379232347 hasConceptScore W4379232347C142724271 @default.
- W4379232347 hasConceptScore W4379232347C19609008 @default.
- W4379232347 hasConceptScore W4379232347C2777432617 @default.
- W4379232347 hasConceptScore W4379232347C2779098232 @default.
- W4379232347 hasConceptScore W4379232347C2780472235 @default.
- W4379232347 hasConceptScore W4379232347C2781156865 @default.
- W4379232347 hasConceptScore W4379232347C2989005 @default.
- W4379232347 hasConceptScore W4379232347C44249647 @default.
- W4379232347 hasConceptScore W4379232347C530470458 @default.
- W4379232347 hasConceptScore W4379232347C58471807 @default.
- W4379232347 hasConceptScore W4379232347C71924100 @default.
- W4379232347 hasConceptScore W4379232347C76318530 @default.
- W4379232347 hasFunder F4320321878 @default.
- W4379232347 hasFunder F4320332531 @default.
- W4379232347 hasLocation W43792323471 @default.
- W4379232347 hasLocation W43792323472 @default.
- W4379232347 hasOpenAccess W4379232347 @default.
- W4379232347 hasPrimaryLocation W43792323471 @default.
- W4379232347 hasRelatedWork W2039528335 @default.
- W4379232347 hasRelatedWork W2093929361 @default.
- W4379232347 hasRelatedWork W2155053728 @default.
- W4379232347 hasRelatedWork W2318436276 @default.
- W4379232347 hasRelatedWork W2327432938 @default.
- W4379232347 hasRelatedWork W2363449805 @default.
- W4379232347 hasRelatedWork W2945218257 @default.
- W4379232347 hasRelatedWork W316473529 @default.
- W4379232347 hasRelatedWork W3206075394 @default.
- W4379232347 hasRelatedWork W4379232347 @default.