Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379232488> ?p ?o ?g. }
- W4379232488 endingPage "52" @default.
- W4379232488 startingPage "52" @default.
- W4379232488 abstract "Lead is a highly toxic heavy metal that creates a water pollutant. It can be released from industrial processes, agricultural chemistry, and community wastes, affecting creatures and human health even at a low concentration. As a result, it is advised that lead be removed before releasing wastewater into the environment. This study synthesized three chitosan bead materials from shrimp shell wastes which were chitosan powder beads (CB), chitosan powder mixed with goethite beads (CFB), and chitosan powder beads coated with goethite (CBF) for removing lead in an aqueous solution. Their surface area, pore volumes, and pore sizes were explored according to Brunauer– Emmett–Teller, and their crystalline formations were investigated using an X-ray diffractometer. Their surface structures were studied using field emission scanning electron microscopy and a focus ion beam, and their chemical compositions were determined using an energy dispersive X-ray spectrometer. Their chemical functional groups were identified via Fourier-transform infrared spectroscopy. In addition, batch experiments were conducted to investigate the effects of several factors on removing lead, and the adsorption isotherm and kinetics were also investigated for determining their adsorption pattern and mechanism. In addition, the desorption experiments were studied to confirm their possible material reusability. The CBF demonstrated the highest surface area and smallest pore size compared with the other materials. In addition, the pore sizes of the CFB and CBF were micropores, whereas those of the CB were mesopores. All materials were semicrystalline structures, and the specific goethite peaks were observed in the CFB and CBF. All materials had spherical shapes with heterogeneous surfaces. Six chemical components of O, C, Ca, N, Cl, and Na were discovered in all materials, and Fe was only found in the CFB and CBF because of the addition of goethite. Five main chemical functional groups of N–H, O–H, C–H, C–O, and –COOH were found in all materials. The optimum conditions of the CB, CFB, and CBF for removing lead were 0.5 g, 16 h, pH 5, 0.5 g, 16 h, pH 5, and 0.4 g, 14 h, pH 5, respectively. The results of the batch experiments demonstrated that the CB, CFB, and CBF were high-efficiency adsorbents for removing lead in solution by more than 95%, whereby the CBF showed the highest lead removal of 99%. The Freundlich isotherm model and pseudo-second-order kinetic model helped to well explain their adsorption pattern and mechanism. The maximum lead adsorption capacities of the CB, CFB, and CBF were 322.58, 333.33, and 344.83 mg/g, respectively. Furthermore, all chitosan materials can be reused for more than three cycles with high lead removal by more than 94%; so, they are potential materials for application in industrial applications." @default.
- W4379232488 created "2023-06-04" @default.
- W4379232488 creator A5019116965 @default.
- W4379232488 creator A5092080655 @default.
- W4379232488 date "2023-06-01" @default.
- W4379232488 modified "2023-10-16" @default.
- W4379232488 title "Adsorption of Lead (II) Ions onto Goethite Chitosan Beads: Isotherms, Kinetics, and Mechanism Studies" @default.
- W4379232488 cites W1058641582 @default.
- W4379232488 cites W1987151878 @default.
- W4379232488 cites W2001276448 @default.
- W4379232488 cites W2020632040 @default.
- W4379232488 cites W2027735098 @default.
- W4379232488 cites W2029182997 @default.
- W4379232488 cites W2037937486 @default.
- W4379232488 cites W2043219105 @default.
- W4379232488 cites W2044114614 @default.
- W4379232488 cites W2047686821 @default.
- W4379232488 cites W2089126541 @default.
- W4379232488 cites W2094283981 @default.
- W4379232488 cites W2098012383 @default.
- W4379232488 cites W2159232912 @default.
- W4379232488 cites W2275691828 @default.
- W4379232488 cites W2462632654 @default.
- W4379232488 cites W2539340642 @default.
- W4379232488 cites W2548014123 @default.
- W4379232488 cites W2599680086 @default.
- W4379232488 cites W2606083231 @default.
- W4379232488 cites W2609166141 @default.
- W4379232488 cites W2616820116 @default.
- W4379232488 cites W2618578455 @default.
- W4379232488 cites W2619605905 @default.
- W4379232488 cites W2738618699 @default.
- W4379232488 cites W2751703720 @default.
- W4379232488 cites W2767027547 @default.
- W4379232488 cites W2775506019 @default.
- W4379232488 cites W2778610630 @default.
- W4379232488 cites W2778783885 @default.
- W4379232488 cites W2783388640 @default.
- W4379232488 cites W2790152884 @default.
- W4379232488 cites W2790174022 @default.
- W4379232488 cites W2804583546 @default.
- W4379232488 cites W2809558839 @default.
- W4379232488 cites W2810331033 @default.
- W4379232488 cites W2883771175 @default.
- W4379232488 cites W2909521022 @default.
- W4379232488 cites W2929069063 @default.
- W4379232488 cites W2941013870 @default.
- W4379232488 cites W2945141783 @default.
- W4379232488 cites W2972756827 @default.
- W4379232488 cites W2987995075 @default.
- W4379232488 cites W3007392043 @default.
- W4379232488 cites W3024272962 @default.
- W4379232488 cites W3084100763 @default.
- W4379232488 cites W3088507132 @default.
- W4379232488 cites W3095382145 @default.
- W4379232488 cites W3138902113 @default.
- W4379232488 cites W3144842303 @default.
- W4379232488 cites W3170674228 @default.
- W4379232488 cites W3179118118 @default.
- W4379232488 cites W3180979011 @default.
- W4379232488 cites W3188059295 @default.
- W4379232488 cites W3195804038 @default.
- W4379232488 cites W3209018045 @default.
- W4379232488 cites W4213083059 @default.
- W4379232488 cites W4224290542 @default.
- W4379232488 cites W4231491715 @default.
- W4379232488 cites W4296637703 @default.
- W4379232488 cites W4297311213 @default.
- W4379232488 cites W4304942979 @default.
- W4379232488 cites W4307804969 @default.
- W4379232488 cites W4309078929 @default.
- W4379232488 cites W4315574427 @default.
- W4379232488 cites W4318068409 @default.
- W4379232488 cites W4318768334 @default.
- W4379232488 cites W4319072265 @default.
- W4379232488 cites W4361980432 @default.
- W4379232488 doi "https://doi.org/10.3390/chemengineering7030052" @default.
- W4379232488 hasPublicationYear "2023" @default.
- W4379232488 type Work @default.
- W4379232488 citedByCount "2" @default.
- W4379232488 countsByYear W43792324882023 @default.
- W4379232488 crossrefType "journal-article" @default.
- W4379232488 hasAuthorship W4379232488A5019116965 @default.
- W4379232488 hasAuthorship W4379232488A5092080655 @default.
- W4379232488 hasBestOaLocation W43792324881 @default.
- W4379232488 hasConcept C127413603 @default.
- W4379232488 hasConcept C150394285 @default.
- W4379232488 hasConcept C160892712 @default.
- W4379232488 hasConcept C161790260 @default.
- W4379232488 hasConcept C178790620 @default.
- W4379232488 hasConcept C184651966 @default.
- W4379232488 hasConcept C185592680 @default.
- W4379232488 hasConcept C192562407 @default.
- W4379232488 hasConcept C2777787761 @default.
- W4379232488 hasConcept C2779732960 @default.
- W4379232488 hasConcept C42360764 @default.
- W4379232488 hasConcept C82776694 @default.
- W4379232488 hasConceptScore W4379232488C127413603 @default.