Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379232567> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4379232567 endingPage "1019" @default.
- W4379232567 startingPage "1005" @default.
- W4379232567 abstract "This paper presents a machine learning approach to automatically classifying post-harvest vegetal species. Color images of vegetal species were applied to convolutional neural networks (CNNs) and support vector machine (SVM) classifiers. We focused on okra as the target vegetal species and classified it into two quality types. However, our approach could also be applied to other species. The machine learning solution consists of several components, and each design process and its combinations are essential for classification quality. Therefore, we carefully investigated their effects on classification accuracy. Through our experimental evaluation, we confirmed the following: (1) in color space selection, HLG (hue, lightness, and green) and HSL (hue, saturation, and lightness) are essential for vegetal species; (2) suitable preprocessing techniques are required owing to the complexity of the data and noise load; and (3) the diversity extension of learning image data by mixing different datasets obtained under different conditions is quite effective in reducing the overfitting possibility. The results of this study will assist AI practitioners in the design and development of post-harvest classifications based on machine learning." @default.
- W4379232567 created "2023-06-04" @default.
- W4379232567 creator A5005393553 @default.
- W4379232567 creator A5025591755 @default.
- W4379232567 creator A5040313190 @default.
- W4379232567 creator A5090691838 @default.
- W4379232567 creator A5092080679 @default.
- W4379232567 date "2023-06-01" @default.
- W4379232567 modified "2023-09-25" @default.
- W4379232567 title "Design of Machine Learning Solutions to Post-Harvest Classification of Vegetal Species" @default.
- W4379232567 cites W2014408679 @default.
- W4379232567 cites W2041636156 @default.
- W4379232567 cites W2277854822 @default.
- W4379232567 cites W2611811901 @default.
- W4379232567 cites W2786538427 @default.
- W4379232567 cites W2799842361 @default.
- W4379232567 cites W2886590014 @default.
- W4379232567 cites W2897228234 @default.
- W4379232567 cites W2899966900 @default.
- W4379232567 cites W2902013328 @default.
- W4379232567 cites W2913699554 @default.
- W4379232567 cites W2921183415 @default.
- W4379232567 cites W2938959907 @default.
- W4379232567 cites W2950775194 @default.
- W4379232567 cites W2980347326 @default.
- W4379232567 cites W2989646980 @default.
- W4379232567 cites W3016940982 @default.
- W4379232567 cites W3034173830 @default.
- W4379232567 cites W3091488873 @default.
- W4379232567 cites W3094600702 @default.
- W4379232567 cites W3105525131 @default.
- W4379232567 cites W3165142978 @default.
- W4379232567 cites W4224528561 @default.
- W4379232567 doi "https://doi.org/10.3390/agriengineering5020063" @default.
- W4379232567 hasPublicationYear "2023" @default.
- W4379232567 type Work @default.
- W4379232567 citedByCount "0" @default.
- W4379232567 crossrefType "journal-article" @default.
- W4379232567 hasAuthorship W4379232567A5005393553 @default.
- W4379232567 hasAuthorship W4379232567A5025591755 @default.
- W4379232567 hasAuthorship W4379232567A5040313190 @default.
- W4379232567 hasAuthorship W4379232567A5090691838 @default.
- W4379232567 hasAuthorship W4379232567A5092080679 @default.
- W4379232567 hasBestOaLocation W43792325671 @default.
- W4379232567 hasConcept C119857082 @default.
- W4379232567 hasConcept C12267149 @default.
- W4379232567 hasConcept C126537357 @default.
- W4379232567 hasConcept C153180895 @default.
- W4379232567 hasConcept C154945302 @default.
- W4379232567 hasConcept C193601281 @default.
- W4379232567 hasConcept C22019652 @default.
- W4379232567 hasConcept C34736171 @default.
- W4379232567 hasConcept C41008148 @default.
- W4379232567 hasConcept C50644808 @default.
- W4379232567 hasConcept C81363708 @default.
- W4379232567 hasConceptScore W4379232567C119857082 @default.
- W4379232567 hasConceptScore W4379232567C12267149 @default.
- W4379232567 hasConceptScore W4379232567C126537357 @default.
- W4379232567 hasConceptScore W4379232567C153180895 @default.
- W4379232567 hasConceptScore W4379232567C154945302 @default.
- W4379232567 hasConceptScore W4379232567C193601281 @default.
- W4379232567 hasConceptScore W4379232567C22019652 @default.
- W4379232567 hasConceptScore W4379232567C34736171 @default.
- W4379232567 hasConceptScore W4379232567C41008148 @default.
- W4379232567 hasConceptScore W4379232567C50644808 @default.
- W4379232567 hasConceptScore W4379232567C81363708 @default.
- W4379232567 hasIssue "2" @default.
- W4379232567 hasLocation W43792325671 @default.
- W4379232567 hasOpenAccess W4379232567 @default.
- W4379232567 hasPrimaryLocation W43792325671 @default.
- W4379232567 hasRelatedWork W1996541855 @default.
- W4379232567 hasRelatedWork W2126100045 @default.
- W4379232567 hasRelatedWork W2384093694 @default.
- W4379232567 hasRelatedWork W2767651786 @default.
- W4379232567 hasRelatedWork W2941912306 @default.
- W4379232567 hasRelatedWork W2977314777 @default.
- W4379232567 hasRelatedWork W3162160273 @default.
- W4379232567 hasRelatedWork W3193301557 @default.
- W4379232567 hasRelatedWork W4225691219 @default.
- W4379232567 hasRelatedWork W4308353688 @default.
- W4379232567 hasVolume "5" @default.
- W4379232567 isParatext "false" @default.
- W4379232567 isRetracted "false" @default.
- W4379232567 workType "article" @default.