Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379233579> ?p ?o ?g. }
- W4379233579 endingPage "51671" @default.
- W4379233579 startingPage "51657" @default.
- W4379233579 abstract "In today’s digital world, automated sentiment analysis from online reviews can contribute to a wide variety of decision-making processes. One example is examining typical perceptions of a product based on customer feedbacks to have a better understanding of consumer expectations, which can help enhance everything from customer service to product offerings. Online review comments, on the other hand, frequently mix different languages, use non-native scripts and do not adhere to strict grammar norms. For a low-resource language like Bangla, the lack of annotated code-mixed data makes automated sentiment analysis more challenging. To address this, we collect online reviews of different products and construct an annotated Bangla-English code mix (BE-CM) dataset (Dataset and other resources are available at <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://github.com/fokhruli/CM-seti-anlysis</uri> ). On our sentiment corpus, we also compare several alternative models from the existing literature. We present a simple but effective data augmentation method that can be utilized with existing word embedding algorithms without the need for a parallel corpus to improve cross-lingual contextual understanding. Our experimental results suggest that training word embedding models (e.g., Word2vec, FastText) with our data augmentation strategy can help the model in capturing the cross-lingual relationship for code-mixed sentences, thereby improving the overall performance of existing classifiers in both supervised learning and zero-shot cross-lingual adaptability. With extensive experimentations, we found that XGBoost with Fasttext embedding trained on our proposed data augmentation method outperforms other alternative models in automated sentiment analysis on code-mixed Bangla-English dataset, with a weighted F1 score of 87%." @default.
- W4379233579 created "2023-06-04" @default.
- W4379233579 creator A5035810941 @default.
- W4379233579 creator A5046718275 @default.
- W4379233579 creator A5049377557 @default.
- W4379233579 creator A5051157079 @default.
- W4379233579 creator A5053407940 @default.
- W4379233579 date "2023-01-01" @default.
- W4379233579 modified "2023-09-23" @default.
- W4379233579 title "Data-Augmentation for Bangla-English Code-Mixed Sentiment Analysis: Enhancing Cross Linguistic Contextual Understanding" @default.
- W4379233579 cites W1572786359 @default.
- W4379233579 cites W2053154970 @default.
- W4379233579 cites W2084046180 @default.
- W4379233579 cites W2139645402 @default.
- W4379233579 cites W2142074148 @default.
- W4379233579 cites W2159359879 @default.
- W4379233579 cites W2160660844 @default.
- W4379233579 cites W2188598232 @default.
- W4379233579 cites W2250539671 @default.
- W4379233579 cites W2251765408 @default.
- W4379233579 cites W2294774419 @default.
- W4379233579 cites W2330376137 @default.
- W4379233579 cites W2402354285 @default.
- W4379233579 cites W2487770199 @default.
- W4379233579 cites W2493916176 @default.
- W4379233579 cites W2514567832 @default.
- W4379233579 cites W2548740357 @default.
- W4379233579 cites W2551614576 @default.
- W4379233579 cites W2564663390 @default.
- W4379233579 cites W2591223967 @default.
- W4379233579 cites W2593754960 @default.
- W4379233579 cites W2786553709 @default.
- W4379233579 cites W2789671692 @default.
- W4379233579 cites W2798348125 @default.
- W4379233579 cites W2882319491 @default.
- W4379233579 cites W2886890203 @default.
- W4379233579 cites W2887800417 @default.
- W4379233579 cites W2909469149 @default.
- W4379233579 cites W2914693643 @default.
- W4379233579 cites W2952638691 @default.
- W4379233579 cites W2962738716 @default.
- W4379233579 cites W2963729324 @default.
- W4379233579 cites W2963944267 @default.
- W4379233579 cites W2970217403 @default.
- W4379233579 cites W2970854433 @default.
- W4379233579 cites W2971207485 @default.
- W4379233579 cites W2972740340 @default.
- W4379233579 cites W2973088264 @default.
- W4379233579 cites W2973887018 @default.
- W4379233579 cites W2986191653 @default.
- W4379233579 cites W2987154291 @default.
- W4379233579 cites W2997575635 @default.
- W4379233579 cites W3004521794 @default.
- W4379233579 cites W3009082425 @default.
- W4379233579 cites W3010756172 @default.
- W4379233579 cites W3034196716 @default.
- W4379233579 cites W3034724424 @default.
- W4379233579 cites W3094223050 @default.
- W4379233579 cites W3102476541 @default.
- W4379233579 cites W3104688854 @default.
- W4379233579 cites W3104723404 @default.
- W4379233579 cites W3105234097 @default.
- W4379233579 cites W342285082 @default.
- W4379233579 cites W4239510810 @default.
- W4379233579 cites W4239946314 @default.
- W4379233579 cites W92860568 @default.
- W4379233579 doi "https://doi.org/10.1109/access.2023.3277787" @default.
- W4379233579 hasPublicationYear "2023" @default.
- W4379233579 type Work @default.
- W4379233579 citedByCount "0" @default.
- W4379233579 crossrefType "journal-article" @default.
- W4379233579 hasAuthorship W4379233579A5035810941 @default.
- W4379233579 hasAuthorship W4379233579A5046718275 @default.
- W4379233579 hasAuthorship W4379233579A5049377557 @default.
- W4379233579 hasAuthorship W4379233579A5051157079 @default.
- W4379233579 hasAuthorship W4379233579A5053407940 @default.
- W4379233579 hasBestOaLocation W43792335791 @default.
- W4379233579 hasConcept C138885662 @default.
- W4379233579 hasConcept C154945302 @default.
- W4379233579 hasConcept C177264268 @default.
- W4379233579 hasConcept C19235068 @default.
- W4379233579 hasConcept C199360897 @default.
- W4379233579 hasConcept C204321447 @default.
- W4379233579 hasConcept C23123220 @default.
- W4379233579 hasConcept C2776461190 @default.
- W4379233579 hasConcept C2776760102 @default.
- W4379233579 hasConcept C2777462759 @default.
- W4379233579 hasConcept C41008148 @default.
- W4379233579 hasConcept C41608201 @default.
- W4379233579 hasConcept C41895202 @default.
- W4379233579 hasConcept C66402592 @default.
- W4379233579 hasConcept C90805587 @default.
- W4379233579 hasConceptScore W4379233579C138885662 @default.
- W4379233579 hasConceptScore W4379233579C154945302 @default.
- W4379233579 hasConceptScore W4379233579C177264268 @default.
- W4379233579 hasConceptScore W4379233579C19235068 @default.
- W4379233579 hasConceptScore W4379233579C199360897 @default.
- W4379233579 hasConceptScore W4379233579C204321447 @default.