Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379284497> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4379284497 endingPage "e13577" @default.
- W4379284497 startingPage "e13577" @default.
- W4379284497 abstract "e13577 Background: Cancer patients may undergo lengthy and painful chemotherapy treatments, comprising several successive regimens or plans. Treatment inefficacy and other adverse events can lead to discontinuation (or failure) of these plans, or prematurely changing them, which results in a significant amount of physical, financial, and emotional toxicity to the patients and their families. In this research work, we build AI driven treatment failure models that utilize the real-world evidence gathered from patients’ profiles available in an oncology EMR/EHR system, with a goal of predicting the likelihood of a plan being discontinued at the time of its prescription. The selected AI models achieve a prediction accuracy of more than 80% and also provide reasons for their inference. Methods: Inclusion and Exclusion Criteria: Deidentified and anonymized electronic health records of patients, with their prescribed chemotherapies, for five different primary cancer diagnoses - ICD10 codes C18, C34, C50, C61 and C90 - that have the highest plan discontinuation rates between the years 2015 and 2022 are analyzed. All patients of other cancer types are excluded. AI Models: Unique features, that influence the treatment failure, for each cancer type are engineered by using therapeutic classification of drugs, diagnoses codes, comorbidity scores, tumor and biomarker information that is extracted from the notes and lab tests. We only use features that are available at the time of selecting a treatment plan. Several machine learning classifiers are investigated, and three tree ensembles - random forests, Xgboost and boosted forests - are further evaluated on the validation set to fine tune learning parameters with an objective to reduce the complexity of decision trees for providing better interpretability without significantly compromising the accuracy. Results: Our pilot studies reveal that boosted forests comprising of 5 random forests, each with 5 trees of depth 10 offer the best compromise between performance and interpretability. The models once trained are evaluated on unseen datasets and four performance measures of AI models are reported. On average, 15 rules are autonomously generated for a treatment failure inference for each cancer type and generally 6 of them have a significant support of 30 samples or greater. Conclusions: Machine learning algorithms for predicting treatment efficacy of chemotherapy regimens by deriving inference from the patients’ EMR/EHR data is an emerging yet challenging research domain. Our studies demonstrate that AI models like boosted forests provide the optimal models for treatment failure use case. In future, we want to validate the system in controlled clinical trials with the help of oncologists. [Table: see text]" @default.
- W4379284497 created "2023-06-05" @default.
- W4379284497 creator A5050593003 @default.
- W4379284497 creator A5074963675 @default.
- W4379284497 date "2023-06-01" @default.
- W4379284497 modified "2023-09-25" @default.
- W4379284497 title "Explainable AI and machine learning algorithms to predict treatment failures for patients with cancer." @default.
- W4379284497 doi "https://doi.org/10.1200/jco.2023.41.16_suppl.e13577" @default.
- W4379284497 hasPublicationYear "2023" @default.
- W4379284497 type Work @default.
- W4379284497 citedByCount "0" @default.
- W4379284497 crossrefType "journal-article" @default.
- W4379284497 hasAuthorship W4379284497A5050593003 @default.
- W4379284497 hasAuthorship W4379284497A5074963675 @default.
- W4379284497 hasConcept C119857082 @default.
- W4379284497 hasConcept C121608353 @default.
- W4379284497 hasConcept C126322002 @default.
- W4379284497 hasConcept C142724271 @default.
- W4379284497 hasConcept C154945302 @default.
- W4379284497 hasConcept C169258074 @default.
- W4379284497 hasConcept C2426938 @default.
- W4379284497 hasConcept C2778715236 @default.
- W4379284497 hasConcept C2779159551 @default.
- W4379284497 hasConcept C41008148 @default.
- W4379284497 hasConcept C534262118 @default.
- W4379284497 hasConcept C71924100 @default.
- W4379284497 hasConcept C98274493 @default.
- W4379284497 hasConceptScore W4379284497C119857082 @default.
- W4379284497 hasConceptScore W4379284497C121608353 @default.
- W4379284497 hasConceptScore W4379284497C126322002 @default.
- W4379284497 hasConceptScore W4379284497C142724271 @default.
- W4379284497 hasConceptScore W4379284497C154945302 @default.
- W4379284497 hasConceptScore W4379284497C169258074 @default.
- W4379284497 hasConceptScore W4379284497C2426938 @default.
- W4379284497 hasConceptScore W4379284497C2778715236 @default.
- W4379284497 hasConceptScore W4379284497C2779159551 @default.
- W4379284497 hasConceptScore W4379284497C41008148 @default.
- W4379284497 hasConceptScore W4379284497C534262118 @default.
- W4379284497 hasConceptScore W4379284497C71924100 @default.
- W4379284497 hasConceptScore W4379284497C98274493 @default.
- W4379284497 hasIssue "16_suppl" @default.
- W4379284497 hasLocation W43792844971 @default.
- W4379284497 hasOpenAccess W4379284497 @default.
- W4379284497 hasPrimaryLocation W43792844971 @default.
- W4379284497 hasRelatedWork W2911455822 @default.
- W4379284497 hasRelatedWork W3116896278 @default.
- W4379284497 hasRelatedWork W3204641204 @default.
- W4379284497 hasRelatedWork W4225360065 @default.
- W4379284497 hasRelatedWork W4282839226 @default.
- W4379284497 hasRelatedWork W4283016678 @default.
- W4379284497 hasRelatedWork W4308191010 @default.
- W4379284497 hasRelatedWork W4316082230 @default.
- W4379284497 hasRelatedWork W4322727400 @default.
- W4379284497 hasRelatedWork W4323021782 @default.
- W4379284497 hasVolume "41" @default.
- W4379284497 isParatext "false" @default.
- W4379284497 isRetracted "false" @default.
- W4379284497 workType "article" @default.