Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379329419> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4379329419 endingPage "e13546" @default.
- W4379329419 startingPage "e13546" @default.
- W4379329419 abstract "e13546 Background: Programmed death-ligand 1 (PD-L1) is a predictive marker for immune checkpoint inhibitors treatment response in urothelial carcinoma (UC). The combined positive score (CPS) is a representative method to evaluate the expression level of PD-L1 in UC. However, inter-observer and inter-institute variations can disrupt accurate CPS evaluation. The purpose of this study is to assess the role of an artificial intelligence (AI)-powered PD-L1 CPS analyzer on UC in reducing inter-observer and inter-institute variability. Methods: Lunit SCOPE PD-L1 CPS was developed with 4.94 x 10 5 tumor cells and 4.17 x 10 5 immune cells from 360 PD-L1 stained whole-slide images (WSIs) of UC from multiple institutions. The algorithm consisted of tissue area segmentation and cell detection AI models. The AI models calculated the CPS by detecting tumor cells over the tumor area and immune cells over the tumor and adjacent area. Three uropathologists from different university hospitals evaluated the CPS classification (≥10 or <10) of 543 PD-L1 stained WSIs of UC from each hospital. The result with concordant CPS classification of each slide across ≥ 2 pathologists was considered the consensus. Each pathologist revisited to evaluate WSIs by referencing the AI model inference, after a washout period, if there was a discrepancy between the pathologist and the AI model. Results: Of 543 WSIs, 446 (82.1%) were classified as the same CPS subgroup by all three uropathologists. Also, pathologists had a high degree of concordance with the consensus in WSIs from their own hospitals. They re-evaluated 64, 73, and 75 WSIs with AI assistance, respectively, and changed the CPS classification for 47, 48, and 48 WSIs. After re-evaluation with AI assistance, three uropathologists agreed on the same CPS classification in 510 WSIs (93.9%). The overall percentage agreement (OPA) of each pathologist with the consensus increased from 95.0%, 94.8%, and 92.3% to 98.7%, 98.3%, and 96.9% after AI assistance, and the OPA for WSIs of other institutions increased more compared to the OPA for WSIs of their own hospital. Conclusions: This study shows that an AI-powered PD-L1 CPS analyzer in UC can reduce inter-observer and inter-site variability. This result suggests that the AI model will help evaluate CPS in UC more accurately and reduce variation in situations where pathologists analyze WSIs from unfamiliar institutions.[Table: see text]" @default.
- W4379329419 created "2023-06-05" @default.
- W4379329419 creator A5013048728 @default.
- W4379329419 creator A5015048758 @default.
- W4379329419 creator A5016511712 @default.
- W4379329419 creator A5029547628 @default.
- W4379329419 creator A5039645150 @default.
- W4379329419 creator A5046467729 @default.
- W4379329419 creator A5052358600 @default.
- W4379329419 creator A5061874926 @default.
- W4379329419 creator A5064979071 @default.
- W4379329419 creator A5068029241 @default.
- W4379329419 creator A5071653924 @default.
- W4379329419 creator A5074576698 @default.
- W4379329419 creator A5075476758 @default.
- W4379329419 creator A5087469449 @default.
- W4379329419 date "2023-06-01" @default.
- W4379329419 modified "2023-10-16" @default.
- W4379329419 title "Effect of an artificial intelligence–powered programmed death-ligand 1 combined positive score analyzer in urothelial cancer on inter-observer and inter-site variability." @default.
- W4379329419 doi "https://doi.org/10.1200/jco.2023.41.16_suppl.e13546" @default.
- W4379329419 hasPublicationYear "2023" @default.
- W4379329419 type Work @default.
- W4379329419 citedByCount "0" @default.
- W4379329419 crossrefType "journal-article" @default.
- W4379329419 hasAuthorship W4379329419A5013048728 @default.
- W4379329419 hasAuthorship W4379329419A5015048758 @default.
- W4379329419 hasAuthorship W4379329419A5016511712 @default.
- W4379329419 hasAuthorship W4379329419A5029547628 @default.
- W4379329419 hasAuthorship W4379329419A5039645150 @default.
- W4379329419 hasAuthorship W4379329419A5046467729 @default.
- W4379329419 hasAuthorship W4379329419A5052358600 @default.
- W4379329419 hasAuthorship W4379329419A5061874926 @default.
- W4379329419 hasAuthorship W4379329419A5064979071 @default.
- W4379329419 hasAuthorship W4379329419A5068029241 @default.
- W4379329419 hasAuthorship W4379329419A5071653924 @default.
- W4379329419 hasAuthorship W4379329419A5074576698 @default.
- W4379329419 hasAuthorship W4379329419A5075476758 @default.
- W4379329419 hasAuthorship W4379329419A5087469449 @default.
- W4379329419 hasConcept C121608353 @default.
- W4379329419 hasConcept C126322002 @default.
- W4379329419 hasConcept C142724271 @default.
- W4379329419 hasConcept C154945302 @default.
- W4379329419 hasConcept C160798450 @default.
- W4379329419 hasConcept C2777701055 @default.
- W4379329419 hasConcept C2781053074 @default.
- W4379329419 hasConcept C41008148 @default.
- W4379329419 hasConcept C71924100 @default.
- W4379329419 hasConceptScore W4379329419C121608353 @default.
- W4379329419 hasConceptScore W4379329419C126322002 @default.
- W4379329419 hasConceptScore W4379329419C142724271 @default.
- W4379329419 hasConceptScore W4379329419C154945302 @default.
- W4379329419 hasConceptScore W4379329419C160798450 @default.
- W4379329419 hasConceptScore W4379329419C2777701055 @default.
- W4379329419 hasConceptScore W4379329419C2781053074 @default.
- W4379329419 hasConceptScore W4379329419C41008148 @default.
- W4379329419 hasConceptScore W4379329419C71924100 @default.
- W4379329419 hasIssue "16_suppl" @default.
- W4379329419 hasLocation W43793294191 @default.
- W4379329419 hasOpenAccess W4379329419 @default.
- W4379329419 hasPrimaryLocation W43793294191 @default.
- W4379329419 hasRelatedWork W1011145067 @default.
- W4379329419 hasRelatedWork W2069110927 @default.
- W4379329419 hasRelatedWork W2207571931 @default.
- W4379329419 hasRelatedWork W2365364931 @default.
- W4379329419 hasRelatedWork W2418638721 @default.
- W4379329419 hasRelatedWork W2591175961 @default.
- W4379329419 hasRelatedWork W2601726279 @default.
- W4379329419 hasRelatedWork W3031119454 @default.
- W4379329419 hasRelatedWork W4238569768 @default.
- W4379329419 hasRelatedWork W1959768523 @default.
- W4379329419 hasVolume "41" @default.
- W4379329419 isParatext "false" @default.
- W4379329419 isRetracted "false" @default.
- W4379329419 workType "article" @default.