Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379375737> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4379375737 endingPage "690" @default.
- W4379375737 startingPage "682" @default.
- W4379375737 abstract "Introduction A DnCNN for image denoising trained with natural images is available in MATLAB. For Tc-99m DMSA images, any loss of clinical details during the denoising process will have serious consequences since denoised image is to be used for diagnosis. The objective of the study was to find whether this pre-trained DnCNN can be used for denoising Tc-99m DMSA images and compare its performance with block matching 3D (BM3D) filter. Materials and methods Two hundred forty-two Tc-99m DMSA images were denoised using BM3D filter (at sigma = 5, 10, 15, 20, and 25) and DnCNN. The original and denoised images were reviewed by two nuclear medicine physicians and also assessed objectively using the image quality metrics: SSIM, FSIM, MultiSSIM, PIQE, Blur, GCF, and Brightness. Wilcoxon signed-rank test was applied to find the statistically significant difference between the value of image quality metrics of the denoised images and the corresponding original images. Results Nuclear medicine physicians observed no loss of clinical information in DnCNN denoised image and superior image quality compared to its original and BM3D denoised images. Edges/boundaries of the scar were found to be well preserved, and doubtful scar became obvious in the denoised image. Objective assessment also showed that the quality of DnCNN denoised images was significantly better than that of original images at P -value <0.0001. Conclusion The pre-trained DnCNN available with MATLAB Deep Learning Toolbox can be used for denoising Tc-99m DMSA images, and the performance of DnCNN was found to be superior in comparison with BM3D filter." @default.
- W4379375737 created "2023-06-06" @default.
- W4379375737 creator A5006552804 @default.
- W4379375737 creator A5023698633 @default.
- W4379375737 creator A5041387905 @default.
- W4379375737 creator A5074279226 @default.
- W4379375737 creator A5083700159 @default.
- W4379375737 date "2023-06-05" @default.
- W4379375737 modified "2023-09-24" @default.
- W4379375737 title "Denoising Tc-99m DMSA images using Denoising Convolutional Neural Network with comparison to a Block Matching Filter" @default.
- W4379375737 cites W1967285753 @default.
- W4379375737 cites W1978749115 @default.
- W4379375737 cites W2035339001 @default.
- W4379375737 cites W2056370875 @default.
- W4379375737 cites W2072007689 @default.
- W4379375737 cites W2085692415 @default.
- W4379375737 cites W2120963878 @default.
- W4379375737 cites W2133665775 @default.
- W4379375737 cites W2141983208 @default.
- W4379375737 cites W2158457008 @default.
- W4379375737 cites W2158940042 @default.
- W4379375737 cites W2508457857 @default.
- W4379375737 cites W2750828008 @default.
- W4379375737 cites W2793888044 @default.
- W4379375737 cites W2902282593 @default.
- W4379375737 cites W2907982107 @default.
- W4379375737 cites W3047011367 @default.
- W4379375737 cites W3113807972 @default.
- W4379375737 cites W3169893408 @default.
- W4379375737 cites W4321639308 @default.
- W4379375737 doi "https://doi.org/10.1097/mnm.0000000000001712" @default.
- W4379375737 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37272279" @default.
- W4379375737 hasPublicationYear "2023" @default.
- W4379375737 type Work @default.
- W4379375737 citedByCount "0" @default.
- W4379375737 crossrefType "journal-article" @default.
- W4379375737 hasAuthorship W4379375737A5006552804 @default.
- W4379375737 hasAuthorship W4379375737A5023698633 @default.
- W4379375737 hasAuthorship W4379375737A5041387905 @default.
- W4379375737 hasAuthorship W4379375737A5074279226 @default.
- W4379375737 hasAuthorship W4379375737A5083700159 @default.
- W4379375737 hasConcept C101453961 @default.
- W4379375737 hasConcept C105795698 @default.
- W4379375737 hasConcept C106131492 @default.
- W4379375737 hasConcept C115961682 @default.
- W4379375737 hasConcept C12868164 @default.
- W4379375737 hasConcept C153180895 @default.
- W4379375737 hasConcept C154945302 @default.
- W4379375737 hasConcept C163294075 @default.
- W4379375737 hasConcept C18537770 @default.
- W4379375737 hasConcept C206041023 @default.
- W4379375737 hasConcept C2983327147 @default.
- W4379375737 hasConcept C31972630 @default.
- W4379375737 hasConcept C33923547 @default.
- W4379375737 hasConcept C41008148 @default.
- W4379375737 hasConcept C55020928 @default.
- W4379375737 hasConcept C81363708 @default.
- W4379375737 hasConceptScore W4379375737C101453961 @default.
- W4379375737 hasConceptScore W4379375737C105795698 @default.
- W4379375737 hasConceptScore W4379375737C106131492 @default.
- W4379375737 hasConceptScore W4379375737C115961682 @default.
- W4379375737 hasConceptScore W4379375737C12868164 @default.
- W4379375737 hasConceptScore W4379375737C153180895 @default.
- W4379375737 hasConceptScore W4379375737C154945302 @default.
- W4379375737 hasConceptScore W4379375737C163294075 @default.
- W4379375737 hasConceptScore W4379375737C18537770 @default.
- W4379375737 hasConceptScore W4379375737C206041023 @default.
- W4379375737 hasConceptScore W4379375737C2983327147 @default.
- W4379375737 hasConceptScore W4379375737C31972630 @default.
- W4379375737 hasConceptScore W4379375737C33923547 @default.
- W4379375737 hasConceptScore W4379375737C41008148 @default.
- W4379375737 hasConceptScore W4379375737C55020928 @default.
- W4379375737 hasConceptScore W4379375737C81363708 @default.
- W4379375737 hasIssue "8" @default.
- W4379375737 hasLocation W43793757371 @default.
- W4379375737 hasLocation W43793757372 @default.
- W4379375737 hasOpenAccess W4379375737 @default.
- W4379375737 hasPrimaryLocation W43793757371 @default.
- W4379375737 hasRelatedWork W1032107053 @default.
- W4379375737 hasRelatedWork W2245295779 @default.
- W4379375737 hasRelatedWork W2253457660 @default.
- W4379375737 hasRelatedWork W2359320837 @default.
- W4379375737 hasRelatedWork W2368061598 @default.
- W4379375737 hasRelatedWork W2392458921 @default.
- W4379375737 hasRelatedWork W2574052219 @default.
- W4379375737 hasRelatedWork W2765936439 @default.
- W4379375737 hasRelatedWork W2810018092 @default.
- W4379375737 hasRelatedWork W3133726735 @default.
- W4379375737 hasVolume "44" @default.
- W4379375737 isParatext "false" @default.
- W4379375737 isRetracted "false" @default.
- W4379375737 workType "article" @default.