Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379377096> ?p ?o ?g. }
- W4379377096 endingPage "280" @default.
- W4379377096 startingPage "272" @default.
- W4379377096 abstract "RNA interference (RNAi) offers an efficient way to repress genes of interest, and it is widely used in research settings. Clinical applications emerged more recently, with 5 approved siRNAs (the RNA guides of the RNAi effector complex) against human diseases. The development of siRNAs against the SARS-CoV-2 virus could therefore provide the basis of novel COVID-19 treatments, while being easily adaptable to future variants or to other, unrelated viruses. Because the biochemistry of RNAi is very precisely described, it is now possible to design siRNAs with high predicted activity and specificity using only computational tools. While previous siRNA design algorithms tended to rely on simplistic strategies (raising fully complementary siRNAs against targets of interest), our approach uses the most up-to-date mechanistic description of RNAi to allow mismatches at tolerable positions and to force them at beneficial positions, while optimizing siRNA duplex asymmetry. Our pipeline proposes 8 siRNAs against SARS-CoV-2, and ex vivo assessment confirms the high antiviral activity of 6 out of 8 siRNAs, also achieving excellent variant coverage (with several 3-siRNA combinations recognizing each correctly-sequenced variant as of September2022). Our approach is easily generalizable to other viruses as long as avariant genome database is available. With siRNA delivery procedures being currently improved, RNAi could therefore become an efficient and versatile antiviral therapeutic strategy." @default.
- W4379377096 created "2023-06-06" @default.
- W4379377096 creator A5003397368 @default.
- W4379377096 creator A5018225522 @default.
- W4379377096 creator A5035093966 @default.
- W4379377096 creator A5052705256 @default.
- W4379377096 creator A5053058742 @default.
- W4379377096 creator A5058282164 @default.
- W4379377096 date "2023-06-04" @default.
- W4379377096 modified "2023-09-26" @default.
- W4379377096 title "Biochemistry-informed design selects potent siRNAs against SARS-CoV-2" @default.
- W4379377096 cites W1892182006 @default.
- W4379377096 cites W1982944995 @default.
- W4379377096 cites W1984948945 @default.
- W4379377096 cites W1991398364 @default.
- W4379377096 cites W1991789117 @default.
- W4379377096 cites W2004271888 @default.
- W4379377096 cites W2012188597 @default.
- W4379377096 cites W2019387053 @default.
- W4379377096 cites W2025635760 @default.
- W4379377096 cites W2030489111 @default.
- W4379377096 cites W2035943396 @default.
- W4379377096 cites W2042673698 @default.
- W4379377096 cites W2043828851 @default.
- W4379377096 cites W2050066317 @default.
- W4379377096 cites W2050642406 @default.
- W4379377096 cites W2068205681 @default.
- W4379377096 cites W2071596792 @default.
- W4379377096 cites W2082213106 @default.
- W4379377096 cites W2092828528 @default.
- W4379377096 cites W2095509700 @default.
- W4379377096 cites W2096018896 @default.
- W4379377096 cites W2098044274 @default.
- W4379377096 cites W2101543035 @default.
- W4379377096 cites W2102694589 @default.
- W4379377096 cites W2111452477 @default.
- W4379377096 cites W2132354121 @default.
- W4379377096 cites W2135837360 @default.
- W4379377096 cites W2151031398 @default.
- W4379377096 cites W2152267176 @default.
- W4379377096 cites W2152993806 @default.
- W4379377096 cites W2155649150 @default.
- W4379377096 cites W2157979318 @default.
- W4379377096 cites W2159595055 @default.
- W4379377096 cites W2160419488 @default.
- W4379377096 cites W2162674813 @default.
- W4379377096 cites W2523101278 @default.
- W4379377096 cites W2587970647 @default.
- W4379377096 cites W2763159217 @default.
- W4379377096 cites W2784380838 @default.
- W4379377096 cites W2888899523 @default.
- W4379377096 cites W2957005848 @default.
- W4379377096 cites W3003217347 @default.
- W4379377096 cites W3005100376 @default.
- W4379377096 cites W3009584253 @default.
- W4379377096 cites W3016489853 @default.
- W4379377096 cites W3017129059 @default.
- W4379377096 cites W3118921345 @default.
- W4379377096 cites W3125712166 @default.
- W4379377096 cites W3130817332 @default.
- W4379377096 cites W3132201940 @default.
- W4379377096 cites W3160304872 @default.
- W4379377096 cites W3161563929 @default.
- W4379377096 cites W3203870163 @default.
- W4379377096 cites W3209660393 @default.
- W4379377096 cites W4200051875 @default.
- W4379377096 cites W4200317975 @default.
- W4379377096 cites W4205795293 @default.
- W4379377096 cites W4206698138 @default.
- W4379377096 cites W4210642183 @default.
- W4379377096 cites W4210867293 @default.
- W4379377096 cites W4211064852 @default.
- W4379377096 cites W4214915547 @default.
- W4379377096 cites W4220854387 @default.
- W4379377096 cites W4224760685 @default.
- W4379377096 cites W4292702960 @default.
- W4379377096 cites W4294550847 @default.
- W4379377096 cites W4327568989 @default.
- W4379377096 doi "https://doi.org/10.1080/15476286.2023.2217400" @default.
- W4379377096 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37272117" @default.
- W4379377096 hasPublicationYear "2023" @default.
- W4379377096 type Work @default.
- W4379377096 citedByCount "0" @default.
- W4379377096 crossrefType "journal-article" @default.
- W4379377096 hasAuthorship W4379377096A5003397368 @default.
- W4379377096 hasAuthorship W4379377096A5018225522 @default.
- W4379377096 hasAuthorship W4379377096A5035093966 @default.
- W4379377096 hasAuthorship W4379377096A5052705256 @default.
- W4379377096 hasAuthorship W4379377096A5053058742 @default.
- W4379377096 hasAuthorship W4379377096A5058282164 @default.
- W4379377096 hasBestOaLocation W43793770961 @default.
- W4379377096 hasConcept C104317684 @default.
- W4379377096 hasConcept C166703698 @default.
- W4379377096 hasConcept C22615655 @default.
- W4379377096 hasConcept C54355233 @default.
- W4379377096 hasConcept C60644358 @default.
- W4379377096 hasConcept C67705224 @default.
- W4379377096 hasConcept C70721500 @default.