Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379383032> ?p ?o ?g. }
- W4379383032 endingPage "107641" @default.
- W4379383032 startingPage "107641" @default.
- W4379383032 abstract "Background and objective: The development of deep learning has led to significant improvements in the decoding accuracy of Motor Imagery (MI) EEG signal classification. However, current models are inadequate in ensuring high levels of classification accuracy for an individual. Since MI EEG data is primarily used in medical rehabilitation and intelligent control, it is crucial to ensure that each individual’s EEG signal is recognized with precision. Methods: We propose a multi-branch graph adaptive network (MBGA-Net), which matches each individual EEG signal with a suitable time-frequency domain processing method based on spatio-temporal domain features. We then feed the signal into the relevant model branch using an adaptive technique. Through an enhanced attention mechanism and deep convolutional method with residual connectivity, each model branch more effectively harvests the features of the related format data. Results: We validate the proposed model using the BCI Competition IV dataset 2a and dataset 2b. On dataset 2a, the average accuracy and kappa values are 87.49% and 0.83, respectively. The standard deviation of individual kappa values is only 0.08. For dataset 2b, the average classification accuracies obtained by feeding the data into the three branches of MBGA-Net are 85.71%, 85.83%, and 86.99%, respectively. Conclusions: The experimental results demonstrate that MBGA-Net could effectively perform the classification task of motor imagery EEG signals, and it exhibits strong generalization performance. The proposed adaptive matching technique enhances the classification accuracy of each individual, which is beneficial for the practical application of EEG classification." @default.
- W4379383032 created "2023-06-06" @default.
- W4379383032 creator A5001566395 @default.
- W4379383032 creator A5020970650 @default.
- W4379383032 creator A5023188736 @default.
- W4379383032 creator A5035375708 @default.
- W4379383032 creator A5070228742 @default.
- W4379383032 creator A5090035031 @default.
- W4379383032 date "2023-10-01" @default.
- W4379383032 modified "2023-09-25" @default.
- W4379383032 title "MBGA-Net:A multi-branch graph adaptive network for individualized motor imagery EEG classification" @default.
- W4379383032 cites W1995877294 @default.
- W4379383032 cites W2037909825 @default.
- W4379383032 cites W2078087619 @default.
- W4379383032 cites W2123229936 @default.
- W4379383032 cites W2128404967 @default.
- W4379383032 cites W2151669316 @default.
- W4379383032 cites W2327450850 @default.
- W4379383032 cites W2483682791 @default.
- W4379383032 cites W2507528282 @default.
- W4379383032 cites W2607062738 @default.
- W4379383032 cites W2611482981 @default.
- W4379383032 cites W2741907166 @default.
- W4379383032 cites W2756928350 @default.
- W4379383032 cites W2790517324 @default.
- W4379383032 cites W2792724009 @default.
- W4379383032 cites W2794345050 @default.
- W4379383032 cites W2802619004 @default.
- W4379383032 cites W2888355470 @default.
- W4379383032 cites W2913907236 @default.
- W4379383032 cites W2921618710 @default.
- W4379383032 cites W2954214015 @default.
- W4379383032 cites W2963283402 @default.
- W4379383032 cites W2971518519 @default.
- W4379383032 cites W2974596145 @default.
- W4379383032 cites W2998481005 @default.
- W4379383032 cites W3011493690 @default.
- W4379383032 cites W3046051368 @default.
- W4379383032 cites W3080395176 @default.
- W4379383032 cites W3082877336 @default.
- W4379383032 cites W3088685598 @default.
- W4379383032 cites W3102455230 @default.
- W4379383032 cites W3127347736 @default.
- W4379383032 cites W3127935830 @default.
- W4379383032 cites W3136129142 @default.
- W4379383032 cites W3147815877 @default.
- W4379383032 cites W3148140065 @default.
- W4379383032 cites W3161143221 @default.
- W4379383032 cites W3207696354 @default.
- W4379383032 cites W4200556933 @default.
- W4379383032 cites W4205512712 @default.
- W4379383032 cites W4213109865 @default.
- W4379383032 cites W4229068451 @default.
- W4379383032 cites W4285498395 @default.
- W4379383032 cites W4300942166 @default.
- W4379383032 cites W4306856408 @default.
- W4379383032 doi "https://doi.org/10.1016/j.cmpb.2023.107641" @default.
- W4379383032 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37327754" @default.
- W4379383032 hasPublicationYear "2023" @default.
- W4379383032 type Work @default.
- W4379383032 citedByCount "0" @default.
- W4379383032 crossrefType "journal-article" @default.
- W4379383032 hasAuthorship W4379383032A5001566395 @default.
- W4379383032 hasAuthorship W4379383032A5020970650 @default.
- W4379383032 hasAuthorship W4379383032A5023188736 @default.
- W4379383032 hasAuthorship W4379383032A5035375708 @default.
- W4379383032 hasAuthorship W4379383032A5070228742 @default.
- W4379383032 hasAuthorship W4379383032A5090035031 @default.
- W4379383032 hasConcept C11413529 @default.
- W4379383032 hasConcept C118552586 @default.
- W4379383032 hasConcept C134306372 @default.
- W4379383032 hasConcept C153180895 @default.
- W4379383032 hasConcept C154945302 @default.
- W4379383032 hasConcept C155512373 @default.
- W4379383032 hasConcept C15744967 @default.
- W4379383032 hasConcept C173201364 @default.
- W4379383032 hasConcept C177148314 @default.
- W4379383032 hasConcept C33923547 @default.
- W4379383032 hasConcept C41008148 @default.
- W4379383032 hasConcept C522805319 @default.
- W4379383032 hasConcept C54808283 @default.
- W4379383032 hasConcept C81363708 @default.
- W4379383032 hasConceptScore W4379383032C11413529 @default.
- W4379383032 hasConceptScore W4379383032C118552586 @default.
- W4379383032 hasConceptScore W4379383032C134306372 @default.
- W4379383032 hasConceptScore W4379383032C153180895 @default.
- W4379383032 hasConceptScore W4379383032C154945302 @default.
- W4379383032 hasConceptScore W4379383032C155512373 @default.
- W4379383032 hasConceptScore W4379383032C15744967 @default.
- W4379383032 hasConceptScore W4379383032C173201364 @default.
- W4379383032 hasConceptScore W4379383032C177148314 @default.
- W4379383032 hasConceptScore W4379383032C33923547 @default.
- W4379383032 hasConceptScore W4379383032C41008148 @default.
- W4379383032 hasConceptScore W4379383032C522805319 @default.
- W4379383032 hasConceptScore W4379383032C54808283 @default.
- W4379383032 hasConceptScore W4379383032C81363708 @default.
- W4379383032 hasLocation W43793830321 @default.
- W4379383032 hasLocation W43793830322 @default.