Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379390759> ?p ?o ?g. }
- W4379390759 endingPage "107643" @default.
- W4379390759 startingPage "107643" @default.
- W4379390759 abstract "BackgroundCompared with chest X-ray (CXR) imaging, which is a single image projected from the front of the patient, chest digital tomosynthesis (CDTS) imaging can be more advantageous for lung lesion detection because it acquires multiple images projected from multiple angles of the patient. Various clinical comparative analysis and verification studies have been reported to demonstrate this, but there is no artificial intelligence (AI)-based comparative analysis studies. Existing AI-based computer-aided detection (CAD) systems for lung lesion diagnosis have been developed mainly based on CXR images; however, CAD-based on CDTS, which uses multi-angle images of patients in various directions, has not been proposed and verified for its usefulness compared to CXR-based counterparts. Background and ObjectiveThis study develops and tests a CDTS-based AI CAD system to detect lung lesions to demonstrate performance improvements compared to CXR-based AI CAD. MethodsWe used multiple (e.g., five) projection images as input for the CDTS-based AI model and a single-projection image as input for the CXR-based AI model to compare and evaluate the performance between models. Multiple/single projection input images were obtained by virtual projection on the three-dimensional (3D) stack of computed tomography (CT) slices of each patient’s lungs from which the bed area was removed. These multiple images result from shooting from the front and left and right 30/60 ∘. The projected image captured from the front was used as the input for the CXR-based AI model. The CDTS-based AI model used all five projected images. The proposed CDTS-based AI model consisted of five AI models that received images in each of the five directions, and obtained the final prediction result through an ensemble of five models. Each model used WideResNet-50. To train and evaluate CXR- and CDTS-based AI models, 500 healthy data, 206 tuberculosis data, and 242 pneumonia data were used, and three three-fold cross-validation was applied. ResultsThe proposed CDTS-based AI CAD system yielded sensitivities of 0.782 and 0.785 and accuracies of 0.895 and 0.837 for the (binary classification) performance of detecting tuberculosis and pneumonia, respectively, against normal subjects. These results show higher performance than the sensitivity of 0.728 and 0.698 and accuracies of 0.874 and 0.826 for detecting tuberculosis and pneumonia through the CXR-based AI CAD, which only uses a single projection image in the frontal direction. We found that CDTS-based AI CAD improved the sensitivity of tuberculosis and pneumonia by 5.4% and 8.7% respectively, compared to CXR-based AI CAD without loss of accuracy. ConclusionsThis study comparatively proves that CDTS-based AI CAD technology can improve performance more than CXR. These results suggest that we can enhance the clinical application of CDTS. Our code is available at https://github.com/kskim-phd/CDTS-CAD-P." @default.
- W4379390759 created "2023-06-06" @default.
- W4379390759 creator A5007845743 @default.
- W4379390759 creator A5015569154 @default.
- W4379390759 creator A5022590014 @default.
- W4379390759 creator A5024870164 @default.
- W4379390759 date "2023-10-01" @default.
- W4379390759 modified "2023-10-14" @default.
- W4379390759 title "AI-based computer-aided diagnostic system of chest digital tomography synthesis: Demonstrating comparative advantage with X-ray-based AI systems" @default.
- W4379390759 cites W1450549269 @default.
- W4379390759 cites W151908361 @default.
- W4379390759 cites W1964249095 @default.
- W4379390759 cites W1975722015 @default.
- W4379390759 cites W1980672391 @default.
- W4379390759 cites W1984634678 @default.
- W4379390759 cites W2001134459 @default.
- W4379390759 cites W2008631430 @default.
- W4379390759 cites W2009245149 @default.
- W4379390759 cites W2010842979 @default.
- W4379390759 cites W2011822437 @default.
- W4379390759 cites W2013843512 @default.
- W4379390759 cites W2037430610 @default.
- W4379390759 cites W2042036475 @default.
- W4379390759 cites W2080652459 @default.
- W4379390759 cites W2083054721 @default.
- W4379390759 cites W2108076801 @default.
- W4379390759 cites W2116019903 @default.
- W4379390759 cites W2117539524 @default.
- W4379390759 cites W2126187248 @default.
- W4379390759 cites W2127381956 @default.
- W4379390759 cites W2132083787 @default.
- W4379390759 cites W2138163882 @default.
- W4379390759 cites W2141201928 @default.
- W4379390759 cites W2141298660 @default.
- W4379390759 cites W2146078900 @default.
- W4379390759 cites W2159558889 @default.
- W4379390759 cites W2165698076 @default.
- W4379390759 cites W2166170442 @default.
- W4379390759 cites W2535534904 @default.
- W4379390759 cites W2558580397 @default.
- W4379390759 cites W2559553341 @default.
- W4379390759 cites W2766609198 @default.
- W4379390759 cites W2777420618 @default.
- W4379390759 cites W2892235178 @default.
- W4379390759 cites W2904854084 @default.
- W4379390759 cites W2964137095 @default.
- W4379390759 cites W3002476946 @default.
- W4379390759 cites W3006630357 @default.
- W4379390759 cites W3008635906 @default.
- W4379390759 cites W3011003666 @default.
- W4379390759 cites W3017855299 @default.
- W4379390759 cites W3054666633 @default.
- W4379390759 cites W3080833865 @default.
- W4379390759 cites W3092001068 @default.
- W4379390759 cites W3094344483 @default.
- W4379390759 cites W3099183222 @default.
- W4379390759 cites W3118649749 @default.
- W4379390759 cites W3168680802 @default.
- W4379390759 cites W3174143649 @default.
- W4379390759 cites W3183576075 @default.
- W4379390759 cites W3207057146 @default.
- W4379390759 cites W3207067901 @default.
- W4379390759 cites W4210897777 @default.
- W4379390759 doi "https://doi.org/10.1016/j.cmpb.2023.107643" @default.
- W4379390759 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37348439" @default.
- W4379390759 hasPublicationYear "2023" @default.
- W4379390759 type Work @default.
- W4379390759 citedByCount "1" @default.
- W4379390759 countsByYear W43793907592023 @default.
- W4379390759 crossrefType "journal-article" @default.
- W4379390759 hasAuthorship W4379390759A5007845743 @default.
- W4379390759 hasAuthorship W4379390759A5015569154 @default.
- W4379390759 hasAuthorship W4379390759A5022590014 @default.
- W4379390759 hasAuthorship W4379390759A5024870164 @default.
- W4379390759 hasBestOaLocation W43793907591 @default.
- W4379390759 hasConcept C11413529 @default.
- W4379390759 hasConcept C121608353 @default.
- W4379390759 hasConcept C126322002 @default.
- W4379390759 hasConcept C127413603 @default.
- W4379390759 hasConcept C147454874 @default.
- W4379390759 hasConcept C153180895 @default.
- W4379390759 hasConcept C154945302 @default.
- W4379390759 hasConcept C194789388 @default.
- W4379390759 hasConcept C199639397 @default.
- W4379390759 hasConcept C2779549770 @default.
- W4379390759 hasConcept C2780472235 @default.
- W4379390759 hasConcept C31601959 @default.
- W4379390759 hasConcept C31972630 @default.
- W4379390759 hasConcept C41008148 @default.
- W4379390759 hasConcept C530470458 @default.
- W4379390759 hasConcept C57493831 @default.
- W4379390759 hasConcept C71924100 @default.
- W4379390759 hasConceptScore W4379390759C11413529 @default.
- W4379390759 hasConceptScore W4379390759C121608353 @default.
- W4379390759 hasConceptScore W4379390759C126322002 @default.
- W4379390759 hasConceptScore W4379390759C127413603 @default.
- W4379390759 hasConceptScore W4379390759C147454874 @default.
- W4379390759 hasConceptScore W4379390759C153180895 @default.