Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379508788> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4379508788 endingPage "5420" @default.
- W4379508788 startingPage "5410" @default.
- W4379508788 abstract "Artifact reduction or removal is a challenging task when the artifact creation physics are not well modeled mathematically. One of such situations is metal artifacts in x-ray CT when the metallic material is unknown, and the x-ray spectrum is wide.A neural network is used to act as the objective function for iterative artifact reduction when the artifact model is unknown.A hypothetical unpredictable projection data distortion model is used to illustrate the proposed approach. The model is unpredictable, because it is controlled by a random variable. A convolutional neural network is trained to recognize the artifacts. The trained network is then used to compute the objective function for an iterative algorithm, which tries to reduce the artifacts in a computed tomography (CT) task. The objective function is evaluated in the image domain. The iterative algorithm for artifact reduction is in the projection domain. A gradient descent algorithm is used for the objective function optimization. The associated gradient is calculated with the chain rule.The learning curves illustrate the decreasing treads of the objective function as the number of iterations increases. The images after the iterative treatment show the reduction of artifacts. A quantitative metric, the Sum Square Difference (SSD), also indicates the effectiveness of the proposed method.The methodology of using a neural network as an objective function has potential value for situations where a human developed model is difficult to describe the underlying physics. Real-world applications are expected to be benefit from this methodology." @default.
- W4379508788 created "2023-06-07" @default.
- W4379508788 creator A5076268379 @default.
- W4379508788 date "2023-06-06" @default.
- W4379508788 modified "2023-10-17" @default.
- W4379508788 title "Neural network guided sinogram‐domain iterative algorithm for artifact reduction" @default.
- W4379508788 cites W1988998660 @default.
- W4379508788 cites W1996326730 @default.
- W4379508788 cites W1996992165 @default.
- W4379508788 cites W2012875423 @default.
- W4379508788 cites W2030007446 @default.
- W4379508788 cites W2034280206 @default.
- W4379508788 cites W2043115439 @default.
- W4379508788 cites W2062095919 @default.
- W4379508788 cites W2105010462 @default.
- W4379508788 cites W2520526731 @default.
- W4379508788 cites W3044282612 @default.
- W4379508788 cites W3165177292 @default.
- W4379508788 cites W4206919217 @default.
- W4379508788 doi "https://doi.org/10.1002/mp.16546" @default.
- W4379508788 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37278308" @default.
- W4379508788 hasPublicationYear "2023" @default.
- W4379508788 type Work @default.
- W4379508788 citedByCount "0" @default.
- W4379508788 crossrefType "journal-article" @default.
- W4379508788 hasAuthorship W4379508788A5076268379 @default.
- W4379508788 hasConcept C111335779 @default.
- W4379508788 hasConcept C11413529 @default.
- W4379508788 hasConcept C126255220 @default.
- W4379508788 hasConcept C14036430 @default.
- W4379508788 hasConcept C141379421 @default.
- W4379508788 hasConcept C153180895 @default.
- W4379508788 hasConcept C153258448 @default.
- W4379508788 hasConcept C154945302 @default.
- W4379508788 hasConcept C159694833 @default.
- W4379508788 hasConcept C162324750 @default.
- W4379508788 hasConcept C176217482 @default.
- W4379508788 hasConcept C21547014 @default.
- W4379508788 hasConcept C2524010 @default.
- W4379508788 hasConcept C2779010991 @default.
- W4379508788 hasConcept C33923547 @default.
- W4379508788 hasConcept C41008148 @default.
- W4379508788 hasConcept C50644808 @default.
- W4379508788 hasConcept C57493831 @default.
- W4379508788 hasConcept C78458016 @default.
- W4379508788 hasConcept C81363708 @default.
- W4379508788 hasConcept C86803240 @default.
- W4379508788 hasConceptScore W4379508788C111335779 @default.
- W4379508788 hasConceptScore W4379508788C11413529 @default.
- W4379508788 hasConceptScore W4379508788C126255220 @default.
- W4379508788 hasConceptScore W4379508788C14036430 @default.
- W4379508788 hasConceptScore W4379508788C141379421 @default.
- W4379508788 hasConceptScore W4379508788C153180895 @default.
- W4379508788 hasConceptScore W4379508788C153258448 @default.
- W4379508788 hasConceptScore W4379508788C154945302 @default.
- W4379508788 hasConceptScore W4379508788C159694833 @default.
- W4379508788 hasConceptScore W4379508788C162324750 @default.
- W4379508788 hasConceptScore W4379508788C176217482 @default.
- W4379508788 hasConceptScore W4379508788C21547014 @default.
- W4379508788 hasConceptScore W4379508788C2524010 @default.
- W4379508788 hasConceptScore W4379508788C2779010991 @default.
- W4379508788 hasConceptScore W4379508788C33923547 @default.
- W4379508788 hasConceptScore W4379508788C41008148 @default.
- W4379508788 hasConceptScore W4379508788C50644808 @default.
- W4379508788 hasConceptScore W4379508788C57493831 @default.
- W4379508788 hasConceptScore W4379508788C78458016 @default.
- W4379508788 hasConceptScore W4379508788C81363708 @default.
- W4379508788 hasConceptScore W4379508788C86803240 @default.
- W4379508788 hasIssue "9" @default.
- W4379508788 hasLocation W43795087881 @default.
- W4379508788 hasLocation W43795087882 @default.
- W4379508788 hasOpenAccess W4379508788 @default.
- W4379508788 hasPrimaryLocation W43795087881 @default.
- W4379508788 hasRelatedWork W2050976294 @default.
- W4379508788 hasRelatedWork W2123133273 @default.
- W4379508788 hasRelatedWork W2126927612 @default.
- W4379508788 hasRelatedWork W2753113106 @default.
- W4379508788 hasRelatedWork W2767651786 @default.
- W4379508788 hasRelatedWork W2912288872 @default.
- W4379508788 hasRelatedWork W3191981400 @default.
- W4379508788 hasRelatedWork W3193474765 @default.
- W4379508788 hasRelatedWork W4255769234 @default.
- W4379508788 hasRelatedWork W4287027030 @default.
- W4379508788 hasVolume "50" @default.
- W4379508788 isParatext "false" @default.
- W4379508788 isRetracted "false" @default.
- W4379508788 workType "article" @default.