Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379517967> ?p ?o ?g. }
- W4379517967 endingPage "237" @default.
- W4379517967 startingPage "237" @default.
- W4379517967 abstract "Inspired by nature, oscillating foils offer viable options as alternate energy resources to harness energy from wind and water. Here, we propose a proper orthogonal decomposition (POD)-based reduced-order model (ROM) of power generation by flapping airfoils in conjunction with deep neural networks. Numerical simulations are performed for incompressible flow past a flapping NACA-0012 airfoil at a Reynolds number of 1100 using the Arbitrary Lagrangian-Eulerian approach. The snapshots of the pressure field around the flapping foil are then utilized to construct the pressure POD modes of each case, which serve as the reduced basis to span the solution space. The novelty of the current research relates to the identification, development, and employment of long-short-term neural network (LSTM) models to predict temporal coefficients of the pressure modes. These coefficients, in turn, are used to reconstruct hydrodynamic forces and moment, leading to computations of power. The proposed model takes the known temporal coefficients as inputs and predicts the future temporal coefficients followed by previously estimated temporal coefficients, very similar to traditional ROM. Through the new trained model, we can predict the temporal coefficients for a long time duration that can be far beyond the training time intervals more accurately. It may not be attained by traditional ROMs that lead to erroneous results. Consequently, the flow physics including the forces and moment exerted by fluids can be reconstructed accurately using POD modes as the basis set." @default.
- W4379517967 created "2023-06-07" @default.
- W4379517967 creator A5015218820 @default.
- W4379517967 creator A5035211946 @default.
- W4379517967 creator A5053826222 @default.
- W4379517967 creator A5068500135 @default.
- W4379517967 creator A5081921356 @default.
- W4379517967 date "2023-06-05" @default.
- W4379517967 modified "2023-09-29" @default.
- W4379517967 title "Deep-Learning-Based Reduced-Order Model for Power Generation Capacity of Flapping Foils" @default.
- W4379517967 cites W1261010427 @default.
- W4379517967 cites W1489519217 @default.
- W4379517967 cites W1633869374 @default.
- W4379517967 cites W1752291024 @default.
- W4379517967 cites W1879712375 @default.
- W4379517967 cites W1964876800 @default.
- W4379517967 cites W1978305233 @default.
- W4379517967 cites W1983589165 @default.
- W4379517967 cites W1989249387 @default.
- W4379517967 cites W1992517214 @default.
- W4379517967 cites W1993369956 @default.
- W4379517967 cites W1994089881 @default.
- W4379517967 cites W1999595831 @default.
- W4379517967 cites W2008789561 @default.
- W4379517967 cites W2016977813 @default.
- W4379517967 cites W2038445368 @default.
- W4379517967 cites W2041243668 @default.
- W4379517967 cites W2041738140 @default.
- W4379517967 cites W2049753327 @default.
- W4379517967 cites W2050571931 @default.
- W4379517967 cites W2055855280 @default.
- W4379517967 cites W2057886081 @default.
- W4379517967 cites W2059996666 @default.
- W4379517967 cites W2064675550 @default.
- W4379517967 cites W2085767064 @default.
- W4379517967 cites W2086114884 @default.
- W4379517967 cites W2095060114 @default.
- W4379517967 cites W2098920641 @default.
- W4379517967 cites W2122469780 @default.
- W4379517967 cites W2126042578 @default.
- W4379517967 cites W2129833497 @default.
- W4379517967 cites W2130259898 @default.
- W4379517967 cites W2131774270 @default.
- W4379517967 cites W2141765376 @default.
- W4379517967 cites W2142703030 @default.
- W4379517967 cites W2145825232 @default.
- W4379517967 cites W2147330878 @default.
- W4379517967 cites W2158024212 @default.
- W4379517967 cites W2164875767 @default.
- W4379517967 cites W2329970822 @default.
- W4379517967 cites W2563263390 @default.
- W4379517967 cites W2584950055 @default.
- W4379517967 cites W2585298970 @default.
- W4379517967 cites W2604850159 @default.
- W4379517967 cites W2615903087 @default.
- W4379517967 cites W2738335552 @default.
- W4379517967 cites W2758102142 @default.
- W4379517967 cites W2766298346 @default.
- W4379517967 cites W2788980797 @default.
- W4379517967 cites W2803629276 @default.
- W4379517967 cites W2885469054 @default.
- W4379517967 cites W2911079798 @default.
- W4379517967 cites W2955957407 @default.
- W4379517967 cites W2963008012 @default.
- W4379517967 cites W3012007521 @default.
- W4379517967 cites W3102002891 @default.
- W4379517967 cites W3102140816 @default.
- W4379517967 cites W3141532974 @default.
- W4379517967 cites W3161200675 @default.
- W4379517967 cites W3199541827 @default.
- W4379517967 cites W4220715685 @default.
- W4379517967 cites W4220800106 @default.
- W4379517967 cites W4288032594 @default.
- W4379517967 cites W4296665541 @default.
- W4379517967 cites W4313307062 @default.
- W4379517967 doi "https://doi.org/10.3390/biomimetics8020237" @default.
- W4379517967 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37366832" @default.
- W4379517967 hasPublicationYear "2023" @default.
- W4379517967 type Work @default.
- W4379517967 citedByCount "0" @default.
- W4379517967 crossrefType "journal-article" @default.
- W4379517967 hasAuthorship W4379517967A5015218820 @default.
- W4379517967 hasAuthorship W4379517967A5035211946 @default.
- W4379517967 hasAuthorship W4379517967A5053826222 @default.
- W4379517967 hasAuthorship W4379517967A5068500135 @default.
- W4379517967 hasAuthorship W4379517967A5081921356 @default.
- W4379517967 hasBestOaLocation W43795179671 @default.
- W4379517967 hasConcept C112124176 @default.
- W4379517967 hasConcept C121332964 @default.
- W4379517967 hasConcept C127413603 @default.
- W4379517967 hasConcept C13393347 @default.
- W4379517967 hasConcept C146978453 @default.
- W4379517967 hasConcept C179254644 @default.
- W4379517967 hasConcept C182748727 @default.
- W4379517967 hasConcept C196558001 @default.
- W4379517967 hasConcept C2780444116 @default.
- W4379517967 hasConcept C41008148 @default.
- W4379517967 hasConcept C57879066 @default.