Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379519489> ?p ?o ?g. }
- W4379519489 abstract "Adding magnetic flux to a band structure breaks Bloch's theorem by realizing a projective representation of the translation group. The resulting Hofstadter spectrum encodes the nonperturbative response of the bands to flux. Depending on their topology, adding flux can enforce a bulk gap closing (a Hofstadter semimetal) or boundary state pumping (a Hofstadter topological insulator). In this Letter, we present a real space classification of these Hofstadter phases. We give topological indices in terms of symmetry-protected real space invariants, which reveal the bulk and boundary responses of fragile topological states to flux. In fact, we find that the flux periodicity in tight-binding models causes the symmetries which are broken by the magnetic field to reenter at strong flux where they form projective point group representations. We completely classify the reentrant projective point groups and find that the Schur multipliers which define them are Arahanov-Bohm phases calculated along the bonds of the crystal. We find that a nontrivial Schur multiplier is enough to predict and protect the Hofstadter response with only zero-flux topology." @default.
- W4379519489 created "2023-06-07" @default.
- W4379519489 creator A5020817636 @default.
- W4379519489 creator A5024948946 @default.
- W4379519489 creator A5063381374 @default.
- W4379519489 creator A5080975155 @default.
- W4379519489 date "2023-06-06" @default.
- W4379519489 modified "2023-10-12" @default.
- W4379519489 title "Hofstadter Topology with Real Space Invariants and Reentrant Projective Symmetries" @default.
- W4379519489 cites W13708621 @default.
- W4379519489 cites W1986508321 @default.
- W4379519489 cites W1991328494 @default.
- W4379519489 cites W1996820002 @default.
- W4379519489 cites W1999692357 @default.
- W4379519489 cites W2027823340 @default.
- W4379519489 cites W2028948400 @default.
- W4379519489 cites W2029143174 @default.
- W4379519489 cites W2036127775 @default.
- W4379519489 cites W2038531793 @default.
- W4379519489 cites W2048971077 @default.
- W4379519489 cites W2062489691 @default.
- W4379519489 cites W2077896911 @default.
- W4379519489 cites W2086348870 @default.
- W4379519489 cites W2096094783 @default.
- W4379519489 cites W2117734893 @default.
- W4379519489 cites W2127169435 @default.
- W4379519489 cites W2595688496 @default.
- W4379519489 cites W2725942412 @default.
- W4379519489 cites W2750111109 @default.
- W4379519489 cites W2883094953 @default.
- W4379519489 cites W2884381403 @default.
- W4379519489 cites W2885419329 @default.
- W4379519489 cites W2902219018 @default.
- W4379519489 cites W2950100175 @default.
- W4379519489 cites W2970305073 @default.
- W4379519489 cites W2995909929 @default.
- W4379519489 cites W3005613510 @default.
- W4379519489 cites W3005860731 @default.
- W4379519489 cites W3012480637 @default.
- W4379519489 cites W3028140732 @default.
- W4379519489 cites W3042256100 @default.
- W4379519489 cites W3043937928 @default.
- W4379519489 cites W3090933238 @default.
- W4379519489 cites W3098859253 @default.
- W4379519489 cites W3103618868 @default.
- W4379519489 cites W3103694672 @default.
- W4379519489 cites W3103733560 @default.
- W4379519489 cites W3107720087 @default.
- W4379519489 cites W3107996366 @default.
- W4379519489 cites W3108833203 @default.
- W4379519489 cites W3128833553 @default.
- W4379519489 cites W3130731793 @default.
- W4379519489 cites W3134080351 @default.
- W4379519489 cites W3134153115 @default.
- W4379519489 cites W3138169223 @default.
- W4379519489 cites W3146218867 @default.
- W4379519489 cites W3149927090 @default.
- W4379519489 cites W3157491536 @default.
- W4379519489 cites W3162880298 @default.
- W4379519489 cites W3163722185 @default.
- W4379519489 cites W3183283354 @default.
- W4379519489 cites W3185608956 @default.
- W4379519489 cites W3185916067 @default.
- W4379519489 cites W3192598923 @default.
- W4379519489 cites W3195903631 @default.
- W4379519489 cites W3208736708 @default.
- W4379519489 cites W3210177871 @default.
- W4379519489 cites W3211479440 @default.
- W4379519489 cites W3217474921 @default.
- W4379519489 cites W326669990 @default.
- W4379519489 cites W4220944804 @default.
- W4379519489 cites W4221136658 @default.
- W4379519489 cites W4224307651 @default.
- W4379519489 cites W4226147786 @default.
- W4379519489 cites W4226302617 @default.
- W4379519489 cites W4226438971 @default.
- W4379519489 cites W4280496647 @default.
- W4379519489 cites W4284964617 @default.
- W4379519489 cites W4288714481 @default.
- W4379519489 cites W4290771356 @default.
- W4379519489 cites W4293462448 @default.
- W4379519489 cites W4295929225 @default.
- W4379519489 cites W4297218810 @default.
- W4379519489 cites W4297424828 @default.
- W4379519489 cites W4304193850 @default.
- W4379519489 cites W4306409990 @default.
- W4379519489 cites W4311999531 @default.
- W4379519489 cites W4313304004 @default.
- W4379519489 cites W4315881665 @default.
- W4379519489 cites W4317040120 @default.
- W4379519489 cites W4323668806 @default.
- W4379519489 cites W4379519918 @default.
- W4379519489 doi "https://doi.org/10.1103/physrevlett.130.236601" @default.
- W4379519489 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37354423" @default.
- W4379519489 hasPublicationYear "2023" @default.
- W4379519489 type Work @default.
- W4379519489 citedByCount "3" @default.
- W4379519489 countsByYear W43795194892023 @default.
- W4379519489 crossrefType "journal-article" @default.
- W4379519489 hasAuthorship W4379519489A5020817636 @default.