Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379529007> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4379529007 endingPage "58" @default.
- W4379529007 startingPage "49" @default.
- W4379529007 abstract "Text line extraction in document recognition is the major step. A number of classical approaches are available like projection profile, bounding box analysis, etc. These classical approaches are unable to segment the text with large variations in individual handwriting. Furthermore, segmentation of documents having data from multiple scripts creates more hurdles due to the presence of different writing styles. The usage of deep networks has been less explored in this domain due to the need of high training time and data. In this research, we have used conditional generative adversarial networks (GANs) for text line extraction in bilingual documents containing Gurumukhi-Latin scripts. It considers text line segmentation problem as image-to-image translation task. Two kinds of encoder–decoder networks are used for comparison, i.e., with skip connections and without skip connections. Dataset for bilingual handwritten documents containing 150 document images has been designed. It includes large variability in writing style and content. Results on the designed dataset for text line extraction are efficient for encoder–decoder network with skip connections." @default.
- W4379529007 created "2023-06-07" @default.
- W4379529007 creator A5029264462 @default.
- W4379529007 creator A5036970136 @default.
- W4379529007 creator A5052317739 @default.
- W4379529007 creator A5055589318 @default.
- W4379529007 date "2022-11-10" @default.
- W4379529007 modified "2023-10-02" @default.
- W4379529007 title "Bilingual Documents Text Lines Extraction Using Conditional GANs" @default.
- W4379529007 cites W2060011982 @default.
- W4379529007 cites W2108739450 @default.
- W4379529007 cites W2144163426 @default.
- W4379529007 cites W2336723637 @default.
- W4379529007 cites W2604383305 @default.
- W4379529007 cites W2934529125 @default.
- W4379529007 cites W2945731760 @default.
- W4379529007 cites W2972261719 @default.
- W4379529007 cites W2981065560 @default.
- W4379529007 cites W3003221725 @default.
- W4379529007 cites W3003222591 @default.
- W4379529007 cites W3003456222 @default.
- W4379529007 cites W3003967978 @default.
- W4379529007 cites W3004282887 @default.
- W4379529007 cites W3020202994 @default.
- W4379529007 cites W3024377038 @default.
- W4379529007 cites W3048770660 @default.
- W4379529007 cites W3081503972 @default.
- W4379529007 cites W3085975801 @default.
- W4379529007 cites W3165865105 @default.
- W4379529007 doi "https://doi.org/10.1007/978-3-031-15175-0_5" @default.
- W4379529007 hasPublicationYear "2022" @default.
- W4379529007 type Work @default.
- W4379529007 citedByCount "0" @default.
- W4379529007 crossrefType "book-chapter" @default.
- W4379529007 hasAuthorship W4379529007A5029264462 @default.
- W4379529007 hasAuthorship W4379529007A5036970136 @default.
- W4379529007 hasAuthorship W4379529007A5052317739 @default.
- W4379529007 hasAuthorship W4379529007A5055589318 @default.
- W4379529007 hasConcept C11413529 @default.
- W4379529007 hasConcept C134306372 @default.
- W4379529007 hasConcept C152565575 @default.
- W4379529007 hasConcept C154945302 @default.
- W4379529007 hasConcept C162324750 @default.
- W4379529007 hasConcept C187736073 @default.
- W4379529007 hasConcept C198352243 @default.
- W4379529007 hasConcept C199360897 @default.
- W4379529007 hasConcept C204321447 @default.
- W4379529007 hasConcept C2524010 @default.
- W4379529007 hasConcept C2779386606 @default.
- W4379529007 hasConcept C2780451532 @default.
- W4379529007 hasConcept C33923547 @default.
- W4379529007 hasConcept C36503486 @default.
- W4379529007 hasConcept C41008148 @default.
- W4379529007 hasConcept C57493831 @default.
- W4379529007 hasConcept C61423126 @default.
- W4379529007 hasConcept C89600930 @default.
- W4379529007 hasConceptScore W4379529007C11413529 @default.
- W4379529007 hasConceptScore W4379529007C134306372 @default.
- W4379529007 hasConceptScore W4379529007C152565575 @default.
- W4379529007 hasConceptScore W4379529007C154945302 @default.
- W4379529007 hasConceptScore W4379529007C162324750 @default.
- W4379529007 hasConceptScore W4379529007C187736073 @default.
- W4379529007 hasConceptScore W4379529007C198352243 @default.
- W4379529007 hasConceptScore W4379529007C199360897 @default.
- W4379529007 hasConceptScore W4379529007C204321447 @default.
- W4379529007 hasConceptScore W4379529007C2524010 @default.
- W4379529007 hasConceptScore W4379529007C2779386606 @default.
- W4379529007 hasConceptScore W4379529007C2780451532 @default.
- W4379529007 hasConceptScore W4379529007C33923547 @default.
- W4379529007 hasConceptScore W4379529007C36503486 @default.
- W4379529007 hasConceptScore W4379529007C41008148 @default.
- W4379529007 hasConceptScore W4379529007C57493831 @default.
- W4379529007 hasConceptScore W4379529007C61423126 @default.
- W4379529007 hasConceptScore W4379529007C89600930 @default.
- W4379529007 hasLocation W43795290071 @default.
- W4379529007 hasOpenAccess W4379529007 @default.
- W4379529007 hasPrimaryLocation W43795290071 @default.
- W4379529007 hasRelatedWork W1980317709 @default.
- W4379529007 hasRelatedWork W2081647779 @default.
- W4379529007 hasRelatedWork W2578916128 @default.
- W4379529007 hasRelatedWork W2787190016 @default.
- W4379529007 hasRelatedWork W2966354721 @default.
- W4379529007 hasRelatedWork W3156736023 @default.
- W4379529007 hasRelatedWork W3172706523 @default.
- W4379529007 hasRelatedWork W3185852197 @default.
- W4379529007 hasRelatedWork W411035256 @default.
- W4379529007 hasRelatedWork W4288762748 @default.
- W4379529007 isParatext "false" @default.
- W4379529007 isRetracted "false" @default.
- W4379529007 workType "book-chapter" @default.