Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379536510> ?p ?o ?g. }
- W4379536510 abstract "Abstract Background International societies have issued guidelines for high-risk breast cancer (BC) screening, recommending contrast-enhanced magnetic resonance imaging (CE-MRI) of the breast as a supplemental diagnostic tool. In our study, we tested the applicability of deep learning-based anomaly detection to identify anomalous changes in negative breast CE-MRI screens associated with future lesion emergence. Methods In this prospective study, we trained a generative adversarial network on dynamic CE-MRI of 33 high-risk women who participated in a screening program but did not develop BC. We defined an anomaly score as the deviation of an observed CE-MRI scan from the model of normal breast tissue variability. We evaluated the anomaly score’s association with future lesion emergence on the level of local image patches (104,531 normal patches, 455 patches of future lesion location) and entire CE-MRI exams (21 normal, 20 with future lesion). Associations were analyzed by receiver operating characteristic (ROC) curves on the patch level and logistic regression on the examination level. Results The local anomaly score on image patches was a good predictor for future lesion emergence (area under the ROC curve 0.804). An exam-level summary score was significantly associated with the emergence of lesions at any location at a later time point ( p = 0.045). Conclusions Breast cancer lesions are associated with anomalous appearance changes in breast CE-MRI occurring before the lesion emerges in high-risk women. These early image signatures are detectable and may be a basis for adjusting individual BC risk and personalized screening. Relevance statement Anomalies in screening MRI preceding lesion emergence in women at high-risk of breast cancer may inform individualized screening and intervention strategies. Key points • Breast lesions are associated with preceding anomalies in CE-MRI of high-risk women. • Deep learning-based anomaly detection can help to adjust risk assessment for future lesions. • An appearance anomaly score may be used for adjusting screening interval times. Graphical Abstract" @default.
- W4379536510 created "2023-06-07" @default.
- W4379536510 creator A5000944221 @default.
- W4379536510 creator A5003998290 @default.
- W4379536510 creator A5012168930 @default.
- W4379536510 creator A5015052494 @default.
- W4379536510 creator A5048912479 @default.
- W4379536510 creator A5060814361 @default.
- W4379536510 date "2023-06-07" @default.
- W4379536510 modified "2023-10-16" @default.
- W4379536510 title "Deep learning for predicting future lesion emergence in high-risk breast MRI screening: a feasibility study" @default.
- W4379536510 cites W1901129140 @default.
- W4379536510 cites W1917647701 @default.
- W4379536510 cites W1969414486 @default.
- W4379536510 cites W1973250008 @default.
- W4379536510 cites W2037737757 @default.
- W4379536510 cites W2078075884 @default.
- W4379536510 cites W2103896883 @default.
- W4379536510 cites W2127890285 @default.
- W4379536510 cites W2134026526 @default.
- W4379536510 cites W2150780222 @default.
- W4379536510 cites W2162096542 @default.
- W4379536510 cites W2224416104 @default.
- W4379536510 cites W2299537488 @default.
- W4379536510 cites W2480199247 @default.
- W4379536510 cites W2763638659 @default.
- W4379536510 cites W2783466344 @default.
- W4379536510 cites W2785568893 @default.
- W4379536510 cites W2794518994 @default.
- W4379536510 cites W2887630114 @default.
- W4379536510 cites W2895926103 @default.
- W4379536510 cites W2914570111 @default.
- W4379536510 cites W2924927402 @default.
- W4379536510 cites W2936218643 @default.
- W4379536510 cites W2936568509 @default.
- W4379536510 cites W2940487144 @default.
- W4379536510 cites W2944016032 @default.
- W4379536510 cites W2964642168 @default.
- W4379536510 cites W2983375288 @default.
- W4379536510 cites W2987140650 @default.
- W4379536510 cites W2996116683 @default.
- W4379536510 cites W3027664401 @default.
- W4379536510 cites W3034099339 @default.
- W4379536510 cites W3039652078 @default.
- W4379536510 cites W3082622980 @default.
- W4379536510 cites W3082696592 @default.
- W4379536510 cites W3124938033 @default.
- W4379536510 cites W3130185507 @default.
- W4379536510 cites W3162176327 @default.
- W4379536510 cites W3200011659 @default.
- W4379536510 cites W3209696424 @default.
- W4379536510 cites W4244777963 @default.
- W4379536510 cites W90665978 @default.
- W4379536510 doi "https://doi.org/10.1186/s41747-023-00343-y" @default.
- W4379536510 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37280478" @default.
- W4379536510 hasPublicationYear "2023" @default.
- W4379536510 type Work @default.
- W4379536510 citedByCount "0" @default.
- W4379536510 crossrefType "journal-article" @default.
- W4379536510 hasAuthorship W4379536510A5000944221 @default.
- W4379536510 hasAuthorship W4379536510A5003998290 @default.
- W4379536510 hasAuthorship W4379536510A5012168930 @default.
- W4379536510 hasAuthorship W4379536510A5015052494 @default.
- W4379536510 hasAuthorship W4379536510A5048912479 @default.
- W4379536510 hasAuthorship W4379536510A5060814361 @default.
- W4379536510 hasBestOaLocation W43795365101 @default.
- W4379536510 hasConcept C118552586 @default.
- W4379536510 hasConcept C121608353 @default.
- W4379536510 hasConcept C126322002 @default.
- W4379536510 hasConcept C126838900 @default.
- W4379536510 hasConcept C142724271 @default.
- W4379536510 hasConcept C143409427 @default.
- W4379536510 hasConcept C151956035 @default.
- W4379536510 hasConcept C16568411 @default.
- W4379536510 hasConcept C2777111374 @default.
- W4379536510 hasConcept C2777432617 @default.
- W4379536510 hasConcept C2778491387 @default.
- W4379536510 hasConcept C2779889316 @default.
- W4379536510 hasConcept C2780472235 @default.
- W4379536510 hasConcept C2781156865 @default.
- W4379536510 hasConcept C530470458 @default.
- W4379536510 hasConcept C58471807 @default.
- W4379536510 hasConcept C71924100 @default.
- W4379536510 hasConceptScore W4379536510C118552586 @default.
- W4379536510 hasConceptScore W4379536510C121608353 @default.
- W4379536510 hasConceptScore W4379536510C126322002 @default.
- W4379536510 hasConceptScore W4379536510C126838900 @default.
- W4379536510 hasConceptScore W4379536510C142724271 @default.
- W4379536510 hasConceptScore W4379536510C143409427 @default.
- W4379536510 hasConceptScore W4379536510C151956035 @default.
- W4379536510 hasConceptScore W4379536510C16568411 @default.
- W4379536510 hasConceptScore W4379536510C2777111374 @default.
- W4379536510 hasConceptScore W4379536510C2777432617 @default.
- W4379536510 hasConceptScore W4379536510C2778491387 @default.
- W4379536510 hasConceptScore W4379536510C2779889316 @default.
- W4379536510 hasConceptScore W4379536510C2780472235 @default.
- W4379536510 hasConceptScore W4379536510C2781156865 @default.
- W4379536510 hasConceptScore W4379536510C530470458 @default.
- W4379536510 hasConceptScore W4379536510C58471807 @default.
- W4379536510 hasConceptScore W4379536510C71924100 @default.