Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379600346> ?p ?o ?g. }
- W4379600346 endingPage "403" @default.
- W4379600346 startingPage "394" @default.
- W4379600346 abstract "The histopathologic diagnosis of colorectal sessile serrated lesions (SSLs) and hyperplastic polyps (HPs) is of low consistency among pathologists. This study aimed to develop and validate a deep learning (DL)-based logical anthropomorphic pathology diagnostic system (LA-SSLD) for the differential diagnosis of colorectal SSL and HP.The diagnosis framework of the LA-SSLD system was constructed according to the current guidelines and consisted of 4 DL models. Deep convolutional neural network (DCNN) 1 was the mucosal layer segmentation model, DCNN 2 was the muscularis mucosa segmentation model, DCNN 3 was the glandular lumen segmentation model, and DCNN 4 was the glandular lumen classification (aberrant or regular) model. A total of 175 HP and 127 SSL sections were collected from Renmin Hospital of Wuhan University during November 2016 to November 2022. The performance of the LA-SSLD system was compared to 11 pathologists with different qualifications through the human-machine contest.The Dice scores of DCNNs 1, 2, and 3 were 93.66%, 58.38%, and 74.04%, respectively. The accuracy of DCNN 4 was 92.72%. In the human-machine contest, the accuracy, sensitivity, and specificity of the LA-SSLD system were 85.71%, 86.36%, and 85.00%, respectively. In comparison with experts (pathologist D: accuracy 83.33%, sensitivity 90.91%, specificity 75.00%; pathologist E: accuracy 85.71%, sensitivity 90.91%, specificity 80.00%), LA-SSLD achieved expert-level accuracy and outperformed all the senior and junior pathologists.This study proposed a logical anthropomorphic diagnostic system for the differential diagnosis of colorectal SSL and HP. The diagnostic performance of the system is comparable to that of experts and has the potential to become a powerful diagnostic tool for SSL in the future. It is worth mentioning that a logical anthropomorphic system can achieve expert-level accuracy with fewer samples, providing potential ideas for the development of other artificial intelligence models." @default.
- W4379600346 created "2023-06-08" @default.
- W4379600346 creator A5001969147 @default.
- W4379600346 creator A5002098720 @default.
- W4379600346 creator A5011662659 @default.
- W4379600346 creator A5014082057 @default.
- W4379600346 creator A5020413053 @default.
- W4379600346 creator A5026771248 @default.
- W4379600346 creator A5037677450 @default.
- W4379600346 creator A5046079526 @default.
- W4379600346 creator A5046692971 @default.
- W4379600346 creator A5048232763 @default.
- W4379600346 creator A5051970233 @default.
- W4379600346 creator A5052837104 @default.
- W4379600346 creator A5057087455 @default.
- W4379600346 creator A5069147580 @default.
- W4379600346 creator A5085987711 @default.
- W4379600346 date "2023-06-03" @default.
- W4379600346 modified "2023-10-16" @default.
- W4379600346 title "Development and Validation of a Deep Learning–Based Histologic Diagnosis System for Diagnosing Colorectal Sessile Serrated Lesions" @default.
- W4379600346 cites W1977095679 @default.
- W4379600346 cites W1994951109 @default.
- W4379600346 cites W2019354420 @default.
- W4379600346 cites W2037880380 @default.
- W4379600346 cites W2038660010 @default.
- W4379600346 cites W2114096955 @default.
- W4379600346 cites W2117726457 @default.
- W4379600346 cites W2119750820 @default.
- W4379600346 cites W2164777277 @default.
- W4379600346 cites W2191199994 @default.
- W4379600346 cites W2508988730 @default.
- W4379600346 cites W2528491735 @default.
- W4379600346 cites W2608438922 @default.
- W4379600346 cites W2886244305 @default.
- W4379600346 cites W2905307056 @default.
- W4379600346 cites W2940760861 @default.
- W4379600346 cites W2950689366 @default.
- W4379600346 cites W2958334035 @default.
- W4379600346 cites W2994685072 @default.
- W4379600346 cites W2996290406 @default.
- W4379600346 cites W3002021892 @default.
- W4379600346 cites W3005078169 @default.
- W4379600346 cites W3005263232 @default.
- W4379600346 cites W3015357052 @default.
- W4379600346 cites W3019938913 @default.
- W4379600346 cites W3022639151 @default.
- W4379600346 cites W3037959220 @default.
- W4379600346 cites W3042657996 @default.
- W4379600346 cites W3087688677 @default.
- W4379600346 cites W3128646645 @default.
- W4379600346 cites W3166025287 @default.
- W4379600346 cites W3207278866 @default.
- W4379600346 cites W3211756810 @default.
- W4379600346 cites W4283651168 @default.
- W4379600346 doi "https://doi.org/10.1093/ajcp/aqad058" @default.
- W4379600346 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37279532" @default.
- W4379600346 hasPublicationYear "2023" @default.
- W4379600346 type Work @default.
- W4379600346 citedByCount "0" @default.
- W4379600346 crossrefType "journal-article" @default.
- W4379600346 hasAuthorship W4379600346A5001969147 @default.
- W4379600346 hasAuthorship W4379600346A5002098720 @default.
- W4379600346 hasAuthorship W4379600346A5011662659 @default.
- W4379600346 hasAuthorship W4379600346A5014082057 @default.
- W4379600346 hasAuthorship W4379600346A5020413053 @default.
- W4379600346 hasAuthorship W4379600346A5026771248 @default.
- W4379600346 hasAuthorship W4379600346A5037677450 @default.
- W4379600346 hasAuthorship W4379600346A5046079526 @default.
- W4379600346 hasAuthorship W4379600346A5046692971 @default.
- W4379600346 hasAuthorship W4379600346A5048232763 @default.
- W4379600346 hasAuthorship W4379600346A5051970233 @default.
- W4379600346 hasAuthorship W4379600346A5052837104 @default.
- W4379600346 hasAuthorship W4379600346A5057087455 @default.
- W4379600346 hasAuthorship W4379600346A5069147580 @default.
- W4379600346 hasAuthorship W4379600346A5085987711 @default.
- W4379600346 hasConcept C126838900 @default.
- W4379600346 hasConcept C142724271 @default.
- W4379600346 hasConcept C154945302 @default.
- W4379600346 hasConcept C2780801072 @default.
- W4379600346 hasConcept C3020132585 @default.
- W4379600346 hasConcept C41008148 @default.
- W4379600346 hasConcept C71924100 @default.
- W4379600346 hasConcept C81363708 @default.
- W4379600346 hasConcept C89600930 @default.
- W4379600346 hasConceptScore W4379600346C126838900 @default.
- W4379600346 hasConceptScore W4379600346C142724271 @default.
- W4379600346 hasConceptScore W4379600346C154945302 @default.
- W4379600346 hasConceptScore W4379600346C2780801072 @default.
- W4379600346 hasConceptScore W4379600346C3020132585 @default.
- W4379600346 hasConceptScore W4379600346C41008148 @default.
- W4379600346 hasConceptScore W4379600346C71924100 @default.
- W4379600346 hasConceptScore W4379600346C81363708 @default.
- W4379600346 hasConceptScore W4379600346C89600930 @default.
- W4379600346 hasIssue "4" @default.
- W4379600346 hasLocation W43796003461 @default.
- W4379600346 hasLocation W43796003462 @default.
- W4379600346 hasOpenAccess W4379600346 @default.
- W4379600346 hasPrimaryLocation W43796003461 @default.