Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379620787> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4379620787 endingPage "1281" @default.
- W4379620787 startingPage "1267" @default.
- W4379620787 abstract "Recently, renewable energy (RE) has become popular due to its benefits, such as being inexpensive, low-carbon, ecologically friendly, steady, and reliable. The RE sources are gradually combined with non-renewable energy (NRE) sources into electric grids to satisfy energy demands. Since energy utilization is highly related to national energy policy, energy prediction using artificial intelligence (AI) and deep learning (DL) based models can be employed for energy prediction on RE and NRE power resources. Predicting energy consumption of RE and NRE sources using effective models becomes necessary. With this motivation, this study presents a new multimodal fusion-based predictive tool for energy consumption prediction (MDLFM-ECP) of RE and NRE power sources. Actual data may influence the prediction performance of the results in prediction approaches. The proposed MDLFM-ECP technique involves pre-processing, fusion-based prediction, and hyperparameter optimization. In addition, the MDLFM-ECP technique involves the fusion of four deep learning (DL) models, namely long short-term memory (LSTM), bidirectional LSTM (Bi-LSTM), deep belief network (DBN), and gated recurrent unit (GRU). Moreover, the chaotic cat swarm optimization (CCSO) algorithm is applied to tune the hyperparameters of the DL models. The design of the CCSO algorithm for optimal hyperparameter tuning of the DL models, showing the novelty of the work. A series of simulations took place to validate the superior performance of the proposed method, and the simulation outcome emphasized the improved results of the MDLFM-ECP technique over the recent approaches with minimum overall mean absolute percentage error of 3.58%." @default.
- W4379620787 created "2023-06-08" @default.
- W4379620787 creator A5005587660 @default.
- W4379620787 creator A5009290210 @default.
- W4379620787 creator A5010863688 @default.
- W4379620787 creator A5021639521 @default.
- W4379620787 creator A5039778903 @default.
- W4379620787 creator A5068423119 @default.
- W4379620787 creator A5077660692 @default.
- W4379620787 creator A5092105313 @default.
- W4379620787 date "2023-01-01" @default.
- W4379620787 modified "2023-09-25" @default.
- W4379620787 title "Predictive Multimodal Deep Learning-Based Sustainable Renewable and Non-Renewable Energy Utilization" @default.
- W4379620787 doi "https://doi.org/10.32604/csse.2023.037735" @default.
- W4379620787 hasPublicationYear "2023" @default.
- W4379620787 type Work @default.
- W4379620787 citedByCount "0" @default.
- W4379620787 crossrefType "journal-article" @default.
- W4379620787 hasAuthorship W4379620787A5005587660 @default.
- W4379620787 hasAuthorship W4379620787A5009290210 @default.
- W4379620787 hasAuthorship W4379620787A5010863688 @default.
- W4379620787 hasAuthorship W4379620787A5021639521 @default.
- W4379620787 hasAuthorship W4379620787A5039778903 @default.
- W4379620787 hasAuthorship W4379620787A5068423119 @default.
- W4379620787 hasAuthorship W4379620787A5077660692 @default.
- W4379620787 hasAuthorship W4379620787A5092105313 @default.
- W4379620787 hasBestOaLocation W43796207871 @default.
- W4379620787 hasConcept C10485038 @default.
- W4379620787 hasConcept C105795698 @default.
- W4379620787 hasConcept C108583219 @default.
- W4379620787 hasConcept C119599485 @default.
- W4379620787 hasConcept C119857082 @default.
- W4379620787 hasConcept C12267149 @default.
- W4379620787 hasConcept C127413603 @default.
- W4379620787 hasConcept C154945302 @default.
- W4379620787 hasConcept C186370098 @default.
- W4379620787 hasConcept C188573790 @default.
- W4379620787 hasConcept C33923547 @default.
- W4379620787 hasConcept C41008148 @default.
- W4379620787 hasConcept C78600449 @default.
- W4379620787 hasConcept C85617194 @default.
- W4379620787 hasConcept C8642999 @default.
- W4379620787 hasConcept C97385483 @default.
- W4379620787 hasConceptScore W4379620787C10485038 @default.
- W4379620787 hasConceptScore W4379620787C105795698 @default.
- W4379620787 hasConceptScore W4379620787C108583219 @default.
- W4379620787 hasConceptScore W4379620787C119599485 @default.
- W4379620787 hasConceptScore W4379620787C119857082 @default.
- W4379620787 hasConceptScore W4379620787C12267149 @default.
- W4379620787 hasConceptScore W4379620787C127413603 @default.
- W4379620787 hasConceptScore W4379620787C154945302 @default.
- W4379620787 hasConceptScore W4379620787C186370098 @default.
- W4379620787 hasConceptScore W4379620787C188573790 @default.
- W4379620787 hasConceptScore W4379620787C33923547 @default.
- W4379620787 hasConceptScore W4379620787C41008148 @default.
- W4379620787 hasConceptScore W4379620787C78600449 @default.
- W4379620787 hasConceptScore W4379620787C85617194 @default.
- W4379620787 hasConceptScore W4379620787C8642999 @default.
- W4379620787 hasConceptScore W4379620787C97385483 @default.
- W4379620787 hasIssue "1" @default.
- W4379620787 hasLocation W43796207871 @default.
- W4379620787 hasOpenAccess W4379620787 @default.
- W4379620787 hasPrimaryLocation W43796207871 @default.
- W4379620787 hasRelatedWork W2955124940 @default.
- W4379620787 hasRelatedWork W2991591812 @default.
- W4379620787 hasRelatedWork W3082895349 @default.
- W4379620787 hasRelatedWork W3121832479 @default.
- W4379620787 hasRelatedWork W4205971908 @default.
- W4379620787 hasRelatedWork W4280535922 @default.
- W4379620787 hasRelatedWork W4283697347 @default.
- W4379620787 hasRelatedWork W4291365775 @default.
- W4379620787 hasRelatedWork W4295309597 @default.
- W4379620787 hasRelatedWork W4298144215 @default.
- W4379620787 hasVolume "47" @default.
- W4379620787 isParatext "false" @default.
- W4379620787 isRetracted "false" @default.
- W4379620787 workType "article" @default.