Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379621880> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4379621880 endingPage "106500" @default.
- W4379621880 startingPage "106500" @default.
- W4379621880 abstract "Tuple, featured as sequences of elements are regarded as one of the most predominant data forms in structural health monitoring (SHM). Activated by powerful capabilities of deep learning (DL) techniques, the DL-driven tuple recognition regime has facilitated plenty of problems settlement in SHM practice by mapping tuples with structural patterns, whereas the determined feature extraction strategies, designated network architectures and specified learning schemas (i.e., supervision paradigms) degrade severely to the model’s transferability and generalizability. Thereby, this study devises a novel General Tuple Recognition Framework (GTRF) towards supervised (SL), unsupervised (UL) and semi-supervised learning (SSL) paradigms. In the framework, pattern-sensitive features (PSFs) are quantitatively defined via a novel feature extractor intervened by deep autoencoder for downstream label propagation via an optimized fuzzy clustering algorithm in SL, UL and SSL paradigms. With sophisticated networks integrated and exquisite novelties embedded, the proposed GTRF is competent for various tuple recognition tasks in diverse learning paradigms regardless of the measurement types or lengths. Multi-level experimental tasks implementation representative in SHM scope were conducted for validations, varying in vibration SL-recognition of a prototype skyscraper, damage UL-detection of a laboratory RC beam and condition SSL-assessment of a full-scale building model. The results comprehensively confirmed the effectiveness and generality of proposed GTRF as well as comparable superiority in recognition accuracy and model adaptability. With flexible paradigm specialization, broad application and great space for optimization, the proposed GTRF framework can promisingly be a prototype for bridging the gap for DL algorithms fusion and models integration of different learning paradigms." @default.
- W4379621880 created "2023-06-08" @default.
- W4379621880 creator A5006874566 @default.
- W4379621880 creator A5011155391 @default.
- W4379621880 creator A5019690302 @default.
- W4379621880 creator A5029674834 @default.
- W4379621880 creator A5088242275 @default.
- W4379621880 date "2023-09-01" @default.
- W4379621880 modified "2023-09-26" @default.
- W4379621880 title "GTRF: A general deep learning framework for tuples recognition towards supervised, semi-supervised and unsupervised paradigms" @default.
- W4379621880 cites W1498436455 @default.
- W4379621880 cites W1970619448 @default.
- W4379621880 cites W1974001681 @default.
- W4379621880 cites W2062826588 @default.
- W4379621880 cites W2076063813 @default.
- W4379621880 cites W2163922914 @default.
- W4379621880 cites W2771020520 @default.
- W4379621880 cites W2911964244 @default.
- W4379621880 cites W3013563687 @default.
- W4379621880 cites W3031696893 @default.
- W4379621880 cites W3033329951 @default.
- W4379621880 cites W3083664991 @default.
- W4379621880 cites W3093468414 @default.
- W4379621880 cites W3121475022 @default.
- W4379621880 cites W3128134818 @default.
- W4379621880 cites W3144804712 @default.
- W4379621880 cites W3163635312 @default.
- W4379621880 cites W3165758560 @default.
- W4379621880 cites W3194790224 @default.
- W4379621880 cites W3211579441 @default.
- W4379621880 cites W3213812752 @default.
- W4379621880 cites W4205431410 @default.
- W4379621880 cites W4213328656 @default.
- W4379621880 cites W4220656170 @default.
- W4379621880 cites W4223416745 @default.
- W4379621880 cites W4243637008 @default.
- W4379621880 cites W4250994051 @default.
- W4379621880 cites W4293415892 @default.
- W4379621880 cites W4296615544 @default.
- W4379621880 cites W4312905949 @default.
- W4379621880 cites W4361000043 @default.
- W4379621880 doi "https://doi.org/10.1016/j.engappai.2023.106500" @default.
- W4379621880 hasPublicationYear "2023" @default.
- W4379621880 type Work @default.
- W4379621880 citedByCount "0" @default.
- W4379621880 crossrefType "journal-article" @default.
- W4379621880 hasAuthorship W4379621880A5006874566 @default.
- W4379621880 hasAuthorship W4379621880A5011155391 @default.
- W4379621880 hasAuthorship W4379621880A5019690302 @default.
- W4379621880 hasAuthorship W4379621880A5029674834 @default.
- W4379621880 hasAuthorship W4379621880A5088242275 @default.
- W4379621880 hasConcept C101738243 @default.
- W4379621880 hasConcept C108583219 @default.
- W4379621880 hasConcept C118615104 @default.
- W4379621880 hasConcept C118930307 @default.
- W4379621880 hasConcept C119857082 @default.
- W4379621880 hasConcept C124101348 @default.
- W4379621880 hasConcept C153180895 @default.
- W4379621880 hasConcept C154945302 @default.
- W4379621880 hasConcept C15744967 @default.
- W4379621880 hasConcept C2780767217 @default.
- W4379621880 hasConcept C33923547 @default.
- W4379621880 hasConcept C41008148 @default.
- W4379621880 hasConcept C542102704 @default.
- W4379621880 hasConcept C8038995 @default.
- W4379621880 hasConceptScore W4379621880C101738243 @default.
- W4379621880 hasConceptScore W4379621880C108583219 @default.
- W4379621880 hasConceptScore W4379621880C118615104 @default.
- W4379621880 hasConceptScore W4379621880C118930307 @default.
- W4379621880 hasConceptScore W4379621880C119857082 @default.
- W4379621880 hasConceptScore W4379621880C124101348 @default.
- W4379621880 hasConceptScore W4379621880C153180895 @default.
- W4379621880 hasConceptScore W4379621880C154945302 @default.
- W4379621880 hasConceptScore W4379621880C15744967 @default.
- W4379621880 hasConceptScore W4379621880C2780767217 @default.
- W4379621880 hasConceptScore W4379621880C33923547 @default.
- W4379621880 hasConceptScore W4379621880C41008148 @default.
- W4379621880 hasConceptScore W4379621880C542102704 @default.
- W4379621880 hasConceptScore W4379621880C8038995 @default.
- W4379621880 hasFunder F4320321543 @default.
- W4379621880 hasLocation W43796218801 @default.
- W4379621880 hasOpenAccess W4379621880 @default.
- W4379621880 hasPrimaryLocation W43796218801 @default.
- W4379621880 hasRelatedWork W2292254049 @default.
- W4379621880 hasRelatedWork W2592385986 @default.
- W4379621880 hasRelatedWork W2597787948 @default.
- W4379621880 hasRelatedWork W3123344745 @default.
- W4379621880 hasRelatedWork W3192794374 @default.
- W4379621880 hasRelatedWork W3208584567 @default.
- W4379621880 hasRelatedWork W3217300629 @default.
- W4379621880 hasRelatedWork W4246751904 @default.
- W4379621880 hasRelatedWork W4302303815 @default.
- W4379621880 hasRelatedWork W4310034804 @default.
- W4379621880 hasVolume "124" @default.
- W4379621880 isParatext "false" @default.
- W4379621880 isRetracted "false" @default.
- W4379621880 workType "article" @default.