Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379644310> ?p ?o ?g. }
- W4379644310 endingPage "112270" @default.
- W4379644310 startingPage "112270" @default.
- W4379644310 abstract "The widespread use of aluminium alloys in the aerospace, transport and marine industries is attributed to their desirable physical properties. The relationship between the alloy composition and microstructure and the resultant mechanical properties is complicated. Machine learning (ML) has become a valuable asset in designing new alloys. The accuracy of previously utilised ML models has been increased by partitioning the alloy data set and training regressors for individual partitions. This study uses a recently reported data-driven partitioning scheme that divides the data into classes based on feature similarity. Individual regressors were trained on each class and compared with the regressor trained on the entire data set. It was revealed that individual class-based regressors are more interpretable without loss in prediction accuracy. The results indicate that the data-driven partitioning scheme outperforms traditional domain knowledge based partitioning, providing both increased model accuracy and increased model interpretability." @default.
- W4379644310 created "2023-06-08" @default.
- W4379644310 creator A5039459434 @default.
- W4379644310 creator A5039925862 @default.
- W4379644310 creator A5065706557 @default.
- W4379644310 date "2023-09-01" @default.
- W4379644310 modified "2023-09-27" @default.
- W4379644310 title "Improving the prediction of mechanical properties of aluminium alloy using data-driven class-based regression" @default.
- W4379644310 cites W1574447377 @default.
- W4379644310 cites W1964903133 @default.
- W4379644310 cites W1969712545 @default.
- W4379644310 cites W1976096490 @default.
- W4379644310 cites W1988567326 @default.
- W4379644310 cites W1990923714 @default.
- W4379644310 cites W2002594318 @default.
- W4379644310 cites W2006791116 @default.
- W4379644310 cites W2009724113 @default.
- W4379644310 cites W2026488318 @default.
- W4379644310 cites W2037962563 @default.
- W4379644310 cites W2060797146 @default.
- W4379644310 cites W2101467366 @default.
- W4379644310 cites W2169281690 @default.
- W4379644310 cites W2211669586 @default.
- W4379644310 cites W2352976728 @default.
- W4379644310 cites W2404693549 @default.
- W4379644310 cites W2464725281 @default.
- W4379644310 cites W2586420373 @default.
- W4379644310 cites W2776586487 @default.
- W4379644310 cites W2789403617 @default.
- W4379644310 cites W2804475694 @default.
- W4379644310 cites W2816629103 @default.
- W4379644310 cites W2886626883 @default.
- W4379644310 cites W2901661567 @default.
- W4379644310 cites W2911489611 @default.
- W4379644310 cites W2911964244 @default.
- W4379644310 cites W2914334713 @default.
- W4379644310 cites W2980292446 @default.
- W4379644310 cites W2986734036 @default.
- W4379644310 cites W3048836495 @default.
- W4379644310 cites W3098539674 @default.
- W4379644310 cites W3123785019 @default.
- W4379644310 cites W3130472551 @default.
- W4379644310 cites W3159760278 @default.
- W4379644310 cites W3164466275 @default.
- W4379644310 cites W4205996444 @default.
- W4379644310 cites W4212883601 @default.
- W4379644310 cites W4283378020 @default.
- W4379644310 cites W4287377289 @default.
- W4379644310 cites W4296284597 @default.
- W4379644310 cites W4318778647 @default.
- W4379644310 cites W50292399 @default.
- W4379644310 cites W54302282 @default.
- W4379644310 cites W2033751609 @default.
- W4379644310 doi "https://doi.org/10.1016/j.commatsci.2023.112270" @default.
- W4379644310 hasPublicationYear "2023" @default.
- W4379644310 type Work @default.
- W4379644310 citedByCount "0" @default.
- W4379644310 crossrefType "journal-article" @default.
- W4379644310 hasAuthorship W4379644310A5039459434 @default.
- W4379644310 hasAuthorship W4379644310A5039925862 @default.
- W4379644310 hasAuthorship W4379644310A5065706557 @default.
- W4379644310 hasConcept C103278499 @default.
- W4379644310 hasConcept C105795698 @default.
- W4379644310 hasConcept C115961682 @default.
- W4379644310 hasConcept C119857082 @default.
- W4379644310 hasConcept C124101348 @default.
- W4379644310 hasConcept C134306372 @default.
- W4379644310 hasConcept C137345334 @default.
- W4379644310 hasConcept C138885662 @default.
- W4379644310 hasConcept C154945302 @default.
- W4379644310 hasConcept C177264268 @default.
- W4379644310 hasConcept C191897082 @default.
- W4379644310 hasConcept C192562407 @default.
- W4379644310 hasConcept C199360897 @default.
- W4379644310 hasConcept C27501479 @default.
- W4379644310 hasConcept C2776401178 @default.
- W4379644310 hasConcept C2777212361 @default.
- W4379644310 hasConcept C2779821118 @default.
- W4379644310 hasConcept C2780026712 @default.
- W4379644310 hasConcept C2781067378 @default.
- W4379644310 hasConcept C33923547 @default.
- W4379644310 hasConcept C36503486 @default.
- W4379644310 hasConcept C41008148 @default.
- W4379644310 hasConcept C41895202 @default.
- W4379644310 hasConcept C45804977 @default.
- W4379644310 hasConcept C58489278 @default.
- W4379644310 hasConcept C83546350 @default.
- W4379644310 hasConceptScore W4379644310C103278499 @default.
- W4379644310 hasConceptScore W4379644310C105795698 @default.
- W4379644310 hasConceptScore W4379644310C115961682 @default.
- W4379644310 hasConceptScore W4379644310C119857082 @default.
- W4379644310 hasConceptScore W4379644310C124101348 @default.
- W4379644310 hasConceptScore W4379644310C134306372 @default.
- W4379644310 hasConceptScore W4379644310C137345334 @default.
- W4379644310 hasConceptScore W4379644310C138885662 @default.
- W4379644310 hasConceptScore W4379644310C154945302 @default.
- W4379644310 hasConceptScore W4379644310C177264268 @default.
- W4379644310 hasConceptScore W4379644310C191897082 @default.