Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379647530> ?p ?o ?g. }
- W4379647530 endingPage "310" @default.
- W4379647530 startingPage "310" @default.
- W4379647530 abstract "On the climate-health issue, studies have already attempted to understand the influence of climate change on the transmission of malaria. Extreme weather events such as floods, droughts, or heat waves can alter the course and distribution of malaria. This study aims to understand the impact of future climate change on malaria transmission using, for the first time in Senegal, the ICTP's community-based vector-borne disease model, TRIeste (VECTRI). This biological model is a dynamic mathematical model for the study of malaria transmission that considers the impact of climate and population variability. A new approach for VECTRI input parameters was also used. A bias correction technique, the cumulative distribution function transform (CDF-t) method, was applied to climate simulations to remove systematic biases in the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) that could alter impact predictions. Beforehand, we use reference data for validation such as CPC global unified gauge-based analysis of daily precipitation (CPC for Climate Prediction Center), ERA5-land reanalysis, Climate Hazards InfraRed Precipitation with Station data (CHIRPS), and African Rainfall Climatology 2.0 (ARC2). The results were analyzed for two CMIP5 scenarios for the different time periods: assessment: 1983-2005; near future: 2006-2028; medium term: 2030-2052; and far future: 2077-2099). The validation results show that the models reproduce the annual cycle well. Except for the IPSL-CM5B model, which gives a peak in August, all the other models (ACCESS1-3, CanESM2, CSIRO, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, and IPSL-CM5B) agree with the validation data on a maximum peak in September with a period of strong transmission in August-October. With spatial variation, the CMIP5 model simulations show more of a difference in the number of malaria cases between the south and the north. Malaria transmission is much higher in the south than in the north. However, the results predicted by the models on the occurrence of malaria by 2100 show differences between the RCP8.5 scenario, considered a high emission scenario, and the RCP4.5 scenario, considered an intermediate mitigation scenario. The CanESM2, CMCC-CM, CMCC-CMS, inmcm4, and IPSL-CM5B models predict decreases with the RCP4.5 scenario. However, ACCESS1-3, CSIRO, NRCM-CM5, GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M predict increases in malaria under all scenarios (RCP4.5 and RCP8.5). The projected decrease in malaria in the future with these models is much more visible in the RCP8.5 scenario. The results of this study are of paramount importance in the climate-health field. These results will assist in decision-making and will allow for the establishment of preventive surveillance systems for local climate-sensitive diseases, including malaria, in the targeted regions of Senegal." @default.
- W4379647530 created "2023-06-08" @default.
- W4379647530 creator A5006994679 @default.
- W4379647530 creator A5048494819 @default.
- W4379647530 creator A5052786341 @default.
- W4379647530 creator A5053265978 @default.
- W4379647530 creator A5075585349 @default.
- W4379647530 creator A5079119472 @default.
- W4379647530 creator A5085293514 @default.
- W4379647530 creator A5092106572 @default.
- W4379647530 date "2023-06-06" @default.
- W4379647530 modified "2023-10-18" @default.
- W4379647530 title "Bias-Corrected CMIP5 Projections for Climate Change and Assessments of Impact on Malaria in Senegal under the VECTRI Model" @default.
- W4379647530 cites W1500859879 @default.
- W4379647530 cites W1542598141 @default.
- W4379647530 cites W1581037542 @default.
- W4379647530 cites W1599595176 @default.
- W4379647530 cites W1632688344 @default.
- W4379647530 cites W1698150934 @default.
- W4379647530 cites W1969006838 @default.
- W4379647530 cites W1970325984 @default.
- W4379647530 cites W1970342354 @default.
- W4379647530 cites W1977501116 @default.
- W4379647530 cites W1980290014 @default.
- W4379647530 cites W1982141874 @default.
- W4379647530 cites W1985309643 @default.
- W4379647530 cites W1985479415 @default.
- W4379647530 cites W1990376608 @default.
- W4379647530 cites W2000383402 @default.
- W4379647530 cites W2005076253 @default.
- W4379647530 cites W2009104405 @default.
- W4379647530 cites W2010336509 @default.
- W4379647530 cites W2017707667 @default.
- W4379647530 cites W2022410845 @default.
- W4379647530 cites W2024496309 @default.
- W4379647530 cites W2027509738 @default.
- W4379647530 cites W2028626843 @default.
- W4379647530 cites W2034771807 @default.
- W4379647530 cites W2035756389 @default.
- W4379647530 cites W2041732709 @default.
- W4379647530 cites W2046848592 @default.
- W4379647530 cites W2054653365 @default.
- W4379647530 cites W2054790777 @default.
- W4379647530 cites W2064174976 @default.
- W4379647530 cites W2064454189 @default.
- W4379647530 cites W2067803043 @default.
- W4379647530 cites W2072756510 @default.
- W4379647530 cites W2075112338 @default.
- W4379647530 cites W2075306937 @default.
- W4379647530 cites W2081818242 @default.
- W4379647530 cites W2082696421 @default.
- W4379647530 cites W2092128325 @default.
- W4379647530 cites W2095176073 @default.
- W4379647530 cites W2099736392 @default.
- W4379647530 cites W2099754414 @default.
- W4379647530 cites W2101642122 @default.
- W4379647530 cites W2103302069 @default.
- W4379647530 cites W2110669521 @default.
- W4379647530 cites W2112338101 @default.
- W4379647530 cites W2117389412 @default.
- W4379647530 cites W2125767514 @default.
- W4379647530 cites W2126681088 @default.
- W4379647530 cites W2129852226 @default.
- W4379647530 cites W2144207524 @default.
- W4379647530 cites W2144981914 @default.
- W4379647530 cites W2159967349 @default.
- W4379647530 cites W2161342911 @default.
- W4379647530 cites W2178913808 @default.
- W4379647530 cites W2186474657 @default.
- W4379647530 cites W2261645655 @default.
- W4379647530 cites W2300019532 @default.
- W4379647530 cites W2310065104 @default.
- W4379647530 cites W2347118524 @default.
- W4379647530 cites W2462010890 @default.
- W4379647530 cites W2599387527 @default.
- W4379647530 cites W2738669641 @default.
- W4379647530 cites W2748775303 @default.
- W4379647530 cites W2759378039 @default.
- W4379647530 cites W2774828845 @default.
- W4379647530 cites W2799618165 @default.
- W4379647530 cites W2893691944 @default.
- W4379647530 cites W2946839003 @default.
- W4379647530 cites W2948613847 @default.
- W4379647530 cites W2961201202 @default.
- W4379647530 cites W2987845547 @default.
- W4379647530 cites W3000355687 @default.
- W4379647530 cites W3004938535 @default.
- W4379647530 cites W3011168224 @default.
- W4379647530 cites W3025949386 @default.
- W4379647530 cites W3034640403 @default.
- W4379647530 cites W3136179920 @default.
- W4379647530 cites W3166559994 @default.
- W4379647530 cites W4214915032 @default.
- W4379647530 cites W4241840196 @default.
- W4379647530 cites W4280499182 @default.
- W4379647530 doi "https://doi.org/10.3390/tropicalmed8060310" @default.
- W4379647530 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37368728" @default.
- W4379647530 hasPublicationYear "2023" @default.