Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379648113> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4379648113 endingPage "283" @default.
- W4379648113 startingPage "265" @default.
- W4379648113 abstract "A non-invasive technique for skin cancer diagnostics that reliably classifies lesions as malignant or benign is analyzed and preferred using machine-learning and deep-learning algorithms. The different stages of diagnostics involve using machine learning: a collection of data images, filtering the images to remove unwanted details and noise, segmenting the images using various clustering algorithms. Feature extraction methods have been used to accomplish classification. Five distinctive classifiers have been trained and their efficiency has been compared. K-nearest neighbor, support vector machine, decision trees, multi-layer perceptron, and random forest are used to classify the skin lesion as malignant or benign. An effective comparison of two different deep-learning architectures, such as AlexNet and GoogLeNet, has been carried out. The dataset, which contains 900 images, is subjected to various identification techniques. The accuracy, F-measure precision, and recall were used to evaluate the effectiveness of the classification scheme. As a result of the findings, when compared with the random forest classifier, AlexNet has a high accuracy of 95%. The number of training samples seems to have a serious influence on the ability of deep-learning strategies. Although having a small number of training samples, the presented scheme was able to precisely discriminate among healthy and diseased lesions. Hence, the proposed method will enhance the effectiveness of early detection for skin cancer and could be used in computer-assisted systems to help dermatologists discover cancerous lesions." @default.
- W4379648113 created "2023-06-08" @default.
- W4379648113 creator A5006737635 @default.
- W4379648113 creator A5019242961 @default.
- W4379648113 creator A5030992956 @default.
- W4379648113 creator A5032076312 @default.
- W4379648113 creator A5068480661 @default.
- W4379648113 creator A5078664087 @default.
- W4379648113 date "2023-01-01" @default.
- W4379648113 modified "2023-09-27" @default.
- W4379648113 title "Emerging Soft Computation Tools for Skin Cancer Diagnostics" @default.
- W4379648113 cites W1909740415 @default.
- W4379648113 cites W2147141800 @default.
- W4379648113 cites W2581082771 @default.
- W4379648113 cites W2592160412 @default.
- W4379648113 cites W2762347490 @default.
- W4379648113 cites W2780611063 @default.
- W4379648113 cites W2781338603 @default.
- W4379648113 cites W2786147899 @default.
- W4379648113 cites W2789587241 @default.
- W4379648113 cites W2794748578 @default.
- W4379648113 cites W2807032201 @default.
- W4379648113 cites W2888406896 @default.
- W4379648113 cites W2911188335 @default.
- W4379648113 cites W2954996726 @default.
- W4379648113 cites W3096208188 @default.
- W4379648113 cites W3096674520 @default.
- W4379648113 cites W3107013001 @default.
- W4379648113 cites W3111690130 @default.
- W4379648113 cites W3118471509 @default.
- W4379648113 cites W3165685657 @default.
- W4379648113 doi "https://doi.org/10.1007/978-3-031-27700-9_16" @default.
- W4379648113 hasPublicationYear "2023" @default.
- W4379648113 type Work @default.
- W4379648113 citedByCount "0" @default.
- W4379648113 crossrefType "book-chapter" @default.
- W4379648113 hasAuthorship W4379648113A5006737635 @default.
- W4379648113 hasAuthorship W4379648113A5019242961 @default.
- W4379648113 hasAuthorship W4379648113A5030992956 @default.
- W4379648113 hasAuthorship W4379648113A5032076312 @default.
- W4379648113 hasAuthorship W4379648113A5068480661 @default.
- W4379648113 hasAuthorship W4379648113A5078664087 @default.
- W4379648113 hasConcept C108583219 @default.
- W4379648113 hasConcept C119857082 @default.
- W4379648113 hasConcept C12267149 @default.
- W4379648113 hasConcept C153180895 @default.
- W4379648113 hasConcept C154945302 @default.
- W4379648113 hasConcept C169258074 @default.
- W4379648113 hasConcept C41008148 @default.
- W4379648113 hasConcept C50644808 @default.
- W4379648113 hasConcept C52622490 @default.
- W4379648113 hasConcept C60908668 @default.
- W4379648113 hasConcept C73555534 @default.
- W4379648113 hasConcept C95623464 @default.
- W4379648113 hasConceptScore W4379648113C108583219 @default.
- W4379648113 hasConceptScore W4379648113C119857082 @default.
- W4379648113 hasConceptScore W4379648113C12267149 @default.
- W4379648113 hasConceptScore W4379648113C153180895 @default.
- W4379648113 hasConceptScore W4379648113C154945302 @default.
- W4379648113 hasConceptScore W4379648113C169258074 @default.
- W4379648113 hasConceptScore W4379648113C41008148 @default.
- W4379648113 hasConceptScore W4379648113C50644808 @default.
- W4379648113 hasConceptScore W4379648113C52622490 @default.
- W4379648113 hasConceptScore W4379648113C60908668 @default.
- W4379648113 hasConceptScore W4379648113C73555534 @default.
- W4379648113 hasConceptScore W4379648113C95623464 @default.
- W4379648113 hasLocation W43796481131 @default.
- W4379648113 hasOpenAccess W4379648113 @default.
- W4379648113 hasPrimaryLocation W43796481131 @default.
- W4379648113 hasRelatedWork W2126100045 @default.
- W4379648113 hasRelatedWork W2733060750 @default.
- W4379648113 hasRelatedWork W2979979539 @default.
- W4379648113 hasRelatedWork W3146250456 @default.
- W4379648113 hasRelatedWork W3168994312 @default.
- W4379648113 hasRelatedWork W3211546796 @default.
- W4379648113 hasRelatedWork W4249229055 @default.
- W4379648113 hasRelatedWork W4283784365 @default.
- W4379648113 hasRelatedWork W4294067781 @default.
- W4379648113 hasRelatedWork W4311106074 @default.
- W4379648113 isParatext "false" @default.
- W4379648113 isRetracted "false" @default.
- W4379648113 workType "book-chapter" @default.