Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379649505> ?p ?o ?g. }
- W4379649505 abstract "Abstract Driver emotion classification is an important topic that can raise awareness of driving habits because many drivers are overconfident and unaware of their bad driving habits. Drivers will acquire insight into their poor driving behaviors and be better able to avoid future accidents if their behavior is automatically identified. In this paper, we use different models such as convolutional neural networks, recurrent neural networks, and multi-layer perceptron classification models to construct an ensemble convolutional neural network-based enhanced driver facial expression recognition model. First, the faces of the drivers are discovered using the faster region-based convolutional neural network (R-CNN) model, which can recognize faces in real-time and offline video reliably and effectively. The feature-fusing technique is utilized to integrate the features extracted from three CNN models, and the fused features are then used to train the suggested ensemble classification model. To increase the accuracy and efficiency of face detection, a new convolutional neural network block (InceptionV3) replaces the improved Faster R-CNN feature-learning block. To evaluate the proposed face detection and driver facial expression recognition (DFER) datasets, we achieved an accuracy of 98.01%, 99.53%, 99.27%, 96.81%, and 99.90% on the JAFFE, CK+, FER-2013, AffectNet, and custom-developed datasets, respectively. The custom-developed dataset has been recorded as the best among all under the simulation environment." @default.
- W4379649505 created "2023-06-08" @default.
- W4379649505 creator A5020562052 @default.
- W4379649505 creator A5022859216 @default.
- W4379649505 creator A5028787159 @default.
- W4379649505 creator A5053577656 @default.
- W4379649505 creator A5065504551 @default.
- W4379649505 creator A5084535666 @default.
- W4379649505 creator A5088445709 @default.
- W4379649505 date "2023-06-07" @default.
- W4379649505 modified "2023-10-18" @default.
- W4379649505 title "A novel driver emotion recognition system based on deep ensemble classification" @default.
- W4379649505 cites W1849277567 @default.
- W4379649505 cites W1974210421 @default.
- W4379649505 cites W2195207531 @default.
- W4379649505 cites W2244142460 @default.
- W4379649505 cites W2295001676 @default.
- W4379649505 cites W2481681431 @default.
- W4379649505 cites W2610961739 @default.
- W4379649505 cites W2730601341 @default.
- W4379649505 cites W2764197504 @default.
- W4379649505 cites W2775699880 @default.
- W4379649505 cites W2781632374 @default.
- W4379649505 cites W2794633590 @default.
- W4379649505 cites W2798506093 @default.
- W4379649505 cites W2799041689 @default.
- W4379649505 cites W2835246884 @default.
- W4379649505 cites W2888214208 @default.
- W4379649505 cites W2899092732 @default.
- W4379649505 cites W2901721413 @default.
- W4379649505 cites W2907382309 @default.
- W4379649505 cites W2946805728 @default.
- W4379649505 cites W2963092169 @default.
- W4379649505 cites W2991497591 @default.
- W4379649505 cites W2997263156 @default.
- W4379649505 cites W3003720578 @default.
- W4379649505 cites W3015282954 @default.
- W4379649505 cites W3033757068 @default.
- W4379649505 cites W3035336958 @default.
- W4379649505 cites W3090140268 @default.
- W4379649505 cites W3119213473 @default.
- W4379649505 cites W3157999215 @default.
- W4379649505 cites W3164873450 @default.
- W4379649505 cites W3166555319 @default.
- W4379649505 cites W3209420330 @default.
- W4379649505 cites W4200059021 @default.
- W4379649505 cites W4205518925 @default.
- W4379649505 cites W4206834032 @default.
- W4379649505 cites W4220732847 @default.
- W4379649505 cites W4220904955 @default.
- W4379649505 cites W4221158260 @default.
- W4379649505 cites W4221166187 @default.
- W4379649505 cites W4223470815 @default.
- W4379649505 cites W4229024336 @default.
- W4379649505 cites W4280652872 @default.
- W4379649505 cites W4281490595 @default.
- W4379649505 cites W4281787794 @default.
- W4379649505 cites W4284676156 @default.
- W4379649505 cites W4285494758 @default.
- W4379649505 cites W4286698070 @default.
- W4379649505 cites W4288102735 @default.
- W4379649505 cites W4293235800 @default.
- W4379649505 cites W4295185399 @default.
- W4379649505 cites W4312132097 @default.
- W4379649505 doi "https://doi.org/10.1007/s40747-023-01100-9" @default.
- W4379649505 hasPublicationYear "2023" @default.
- W4379649505 type Work @default.
- W4379649505 citedByCount "1" @default.
- W4379649505 countsByYear W43796495052023 @default.
- W4379649505 crossrefType "journal-article" @default.
- W4379649505 hasAuthorship W4379649505A5020562052 @default.
- W4379649505 hasAuthorship W4379649505A5022859216 @default.
- W4379649505 hasAuthorship W4379649505A5028787159 @default.
- W4379649505 hasAuthorship W4379649505A5053577656 @default.
- W4379649505 hasAuthorship W4379649505A5065504551 @default.
- W4379649505 hasAuthorship W4379649505A5084535666 @default.
- W4379649505 hasAuthorship W4379649505A5088445709 @default.
- W4379649505 hasBestOaLocation W43796495051 @default.
- W4379649505 hasConcept C108583219 @default.
- W4379649505 hasConcept C119857082 @default.
- W4379649505 hasConcept C119898033 @default.
- W4379649505 hasConcept C138885662 @default.
- W4379649505 hasConcept C139502532 @default.
- W4379649505 hasConcept C144024400 @default.
- W4379649505 hasConcept C153180895 @default.
- W4379649505 hasConcept C154945302 @default.
- W4379649505 hasConcept C179717631 @default.
- W4379649505 hasConcept C199360897 @default.
- W4379649505 hasConcept C2524010 @default.
- W4379649505 hasConcept C2776401178 @default.
- W4379649505 hasConcept C2777210771 @default.
- W4379649505 hasConcept C2779304628 @default.
- W4379649505 hasConcept C2780801425 @default.
- W4379649505 hasConcept C31510193 @default.
- W4379649505 hasConcept C33923547 @default.
- W4379649505 hasConcept C36289849 @default.
- W4379649505 hasConcept C41008148 @default.
- W4379649505 hasConcept C41895202 @default.
- W4379649505 hasConcept C45942800 @default.
- W4379649505 hasConcept C50644808 @default.