Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379660231> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4379660231 endingPage "387" @default.
- W4379660231 startingPage "375" @default.
- W4379660231 abstract "Timely determination of whether there is intracerebral hemorrhage after thrombectomy is essential for follow-up treatment. But, this is extremely challenging with standard single-energy CT (SECT), because blood and contrast agents (injected during thrombectomy) have similar CT values under a single energy spectrum. In contrast, dual-energy CT (DECT) employs two different energy spectra, thus allowing to differentiate between hemorrhage and contrast extravasation in real time, based on energy-related attenuation characteristics between blood and contrast. However, compared to SECT scanners, DECT scanners have limited popularity due to high price. To address this dilemma, in this paper we first attempt to generate pseudo DECT images from a SECT image for real-time diagnosis of hemorrhage. More specifically, we propose a SECT-to-DECT generative adversarial network (S2DGAN), which is a 3D transformer-based multi-task learning framework equipped with a shared attention mechanism. Among them, the transformer-based architecture can guide S2DGAN to focus more on high-density areas (crucial for hemorrhage diagnosis) during the generation. Meanwhile, the introduced multi-task learning strategy and shared attention mechanism enable S2DGAN to model dependencies between interconnected generation tasks, improving generation performance while significantly reducing model parameters and computational complexity. Validated on clinical data, S2DGAN can generate DECT images better than state of-the-art methods and achieve an accuracy of $$90%$$ in hemorrhage diagnosis based only on SECT images." @default.
- W4379660231 created "2023-06-08" @default.
- W4379660231 creator A5000937401 @default.
- W4379660231 creator A5005676360 @default.
- W4379660231 creator A5007445600 @default.
- W4379660231 creator A5018813034 @default.
- W4379660231 creator A5033112541 @default.
- W4379660231 creator A5034379660 @default.
- W4379660231 creator A5041971632 @default.
- W4379660231 creator A5062542913 @default.
- W4379660231 creator A5074556234 @default.
- W4379660231 date "2023-01-01" @default.
- W4379660231 modified "2023-09-27" @default.
- W4379660231 title "S2DGAN: Generating Dual-energy CT from Single-energy CT for Real-time Determination of Intracerebral Hemorrhage" @default.
- W4379660231 cites W1968736638 @default.
- W4379660231 cites W2009301866 @default.
- W4379660231 cites W2135535334 @default.
- W4379660231 cites W2412782625 @default.
- W4379660231 cites W2729145866 @default.
- W4379660231 cites W2785730081 @default.
- W4379660231 cites W2789588857 @default.
- W4379660231 cites W2794022343 @default.
- W4379660231 cites W2997534433 @default.
- W4379660231 cites W3105747145 @default.
- W4379660231 cites W3131131418 @default.
- W4379660231 cites W3138516171 @default.
- W4379660231 cites W3198744278 @default.
- W4379660231 cites W3200891683 @default.
- W4379660231 cites W3214826942 @default.
- W4379660231 cites W4295434409 @default.
- W4379660231 cites W4295940432 @default.
- W4379660231 cites W4312836739 @default.
- W4379660231 doi "https://doi.org/10.1007/978-3-031-34048-2_29" @default.
- W4379660231 hasPublicationYear "2023" @default.
- W4379660231 type Work @default.
- W4379660231 citedByCount "0" @default.
- W4379660231 crossrefType "book-chapter" @default.
- W4379660231 hasAuthorship W4379660231A5000937401 @default.
- W4379660231 hasAuthorship W4379660231A5005676360 @default.
- W4379660231 hasAuthorship W4379660231A5007445600 @default.
- W4379660231 hasAuthorship W4379660231A5018813034 @default.
- W4379660231 hasAuthorship W4379660231A5033112541 @default.
- W4379660231 hasAuthorship W4379660231A5034379660 @default.
- W4379660231 hasAuthorship W4379660231A5041971632 @default.
- W4379660231 hasAuthorship W4379660231A5062542913 @default.
- W4379660231 hasAuthorship W4379660231A5074556234 @default.
- W4379660231 hasConcept C105795698 @default.
- W4379660231 hasConcept C150432741 @default.
- W4379660231 hasConcept C154945302 @default.
- W4379660231 hasConcept C186370098 @default.
- W4379660231 hasConcept C2776502983 @default.
- W4379660231 hasConcept C33923547 @default.
- W4379660231 hasConcept C41008148 @default.
- W4379660231 hasConcept C555944384 @default.
- W4379660231 hasConcept C71924100 @default.
- W4379660231 hasConcept C76155785 @default.
- W4379660231 hasConceptScore W4379660231C105795698 @default.
- W4379660231 hasConceptScore W4379660231C150432741 @default.
- W4379660231 hasConceptScore W4379660231C154945302 @default.
- W4379660231 hasConceptScore W4379660231C186370098 @default.
- W4379660231 hasConceptScore W4379660231C2776502983 @default.
- W4379660231 hasConceptScore W4379660231C33923547 @default.
- W4379660231 hasConceptScore W4379660231C41008148 @default.
- W4379660231 hasConceptScore W4379660231C555944384 @default.
- W4379660231 hasConceptScore W4379660231C71924100 @default.
- W4379660231 hasConceptScore W4379660231C76155785 @default.
- W4379660231 hasLocation W43796602311 @default.
- W4379660231 hasOpenAccess W4379660231 @default.
- W4379660231 hasPrimaryLocation W43796602311 @default.
- W4379660231 hasRelatedWork W1987421842 @default.
- W4379660231 hasRelatedWork W2071138464 @default.
- W4379660231 hasRelatedWork W2128386932 @default.
- W4379660231 hasRelatedWork W2365760489 @default.
- W4379660231 hasRelatedWork W2383121084 @default.
- W4379660231 hasRelatedWork W2748952813 @default.
- W4379660231 hasRelatedWork W2899084033 @default.
- W4379660231 hasRelatedWork W3016204780 @default.
- W4379660231 hasRelatedWork W2922490778 @default.
- W4379660231 hasRelatedWork W3021014378 @default.
- W4379660231 isParatext "false" @default.
- W4379660231 isRetracted "false" @default.
- W4379660231 workType "book-chapter" @default.