Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379662020> ?p ?o ?g. }
- W4379662020 endingPage "105792" @default.
- W4379662020 startingPage "105792" @default.
- W4379662020 abstract "Accurate binary images based on dye-tracing experiments are fundamental for understanding preferential flow in soil. Nevertheless, general image-processing software, such as Photoshop, Image-Pro Plus, and ImageJ, cannot automatically and accurately binarize dye-strained regions for the areas with uneven staining and blurred boundaries, causing errors in the subsequent analysis of preferential flow characteristics. Therefore, this study aimed to develop a novel UNet segmentation method based on a dual-scale attention residual module (DARM-UNet), to improve the segmentation accuracy of preferential flow images and assist in digital soil descriptions. The proposed method is a two-level nested U-structure, i.e., a dual-scale attention residual module (DARM) on the lowest level and the typical architecture of UNet at the top level. On the lowest level, the DARM obtained improved contextual information and expand the receptive field based on the attention mechanism and the dual-scale convolution, which was used to improve the recognition ability of uneven dye and low-contrast regions. At the top level, the typical architecture of the UNet model was followed to fuse feature maps of different resolutions, in which each stage is filled by a DARM block. Compared with general image processing software and deep learning methods, the DARM-UNet method showed higher preferential flow segmentation accuracies (95.71% and 93.29%), recall rates (91.91% and 89.29%), and harmonic means (92.72% and 91.82%) for the natural secondary and hazelnut shrub forests, respectively. The four preferential flow indicators indicated that the flow patterns of the natural secondary and hazelnut shrub forests varied with soil depth. In natural secondary forests, the preferential flow started from the surface and was of the primary flow type, whereas in hazelnut shrub forests, it occurred only in the deeper layer, following the matrix flow and concentrating in the 0–16 cm soil layer. This study demonstrated that the proposed DARM-UNet method could effectively identify and segment preferential flow of different forests, especially the areas with uneven staining and blurred boundaries." @default.
- W4379662020 created "2023-06-08" @default.
- W4379662020 creator A5003373205 @default.
- W4379662020 creator A5030032799 @default.
- W4379662020 creator A5057621155 @default.
- W4379662020 creator A5058974135 @default.
- W4379662020 creator A5065256469 @default.
- W4379662020 date "2023-09-01" @default.
- W4379662020 modified "2023-10-11" @default.
- W4379662020 title "A novel UNet segmentation method based on deep learning for preferential flow in soil" @default.
- W4379662020 cites W1901129140 @default.
- W4379662020 cites W1903029394 @default.
- W4379662020 cites W1968820860 @default.
- W4379662020 cites W1992076099 @default.
- W4379662020 cites W1994217288 @default.
- W4379662020 cites W1999643393 @default.
- W4379662020 cites W2003326448 @default.
- W4379662020 cites W2044619215 @default.
- W4379662020 cites W2083601800 @default.
- W4379662020 cites W2087831237 @default.
- W4379662020 cites W2097117768 @default.
- W4379662020 cites W2101366327 @default.
- W4379662020 cites W2117531663 @default.
- W4379662020 cites W2136286580 @default.
- W4379662020 cites W2154879180 @default.
- W4379662020 cites W2592939477 @default.
- W4379662020 cites W2767328128 @default.
- W4379662020 cites W2884585870 @default.
- W4379662020 cites W2885291169 @default.
- W4379662020 cites W2895997053 @default.
- W4379662020 cites W2896432723 @default.
- W4379662020 cites W2901175593 @default.
- W4379662020 cites W2904842575 @default.
- W4379662020 cites W2921433553 @default.
- W4379662020 cites W2926224217 @default.
- W4379662020 cites W2932329447 @default.
- W4379662020 cites W2938062330 @default.
- W4379662020 cites W2963698633 @default.
- W4379662020 cites W2974603581 @default.
- W4379662020 cites W3008996602 @default.
- W4379662020 cites W3021600224 @default.
- W4379662020 cites W3033699671 @default.
- W4379662020 cites W3043459805 @default.
- W4379662020 cites W3093758100 @default.
- W4379662020 cites W3120801191 @default.
- W4379662020 cites W3128419043 @default.
- W4379662020 cites W3135173131 @default.
- W4379662020 cites W3159677689 @default.
- W4379662020 cites W3164208111 @default.
- W4379662020 cites W3186009828 @default.
- W4379662020 cites W3192336434 @default.
- W4379662020 cites W4200104340 @default.
- W4379662020 cites W4220918840 @default.
- W4379662020 cites W4294770389 @default.
- W4379662020 cites W4308249259 @default.
- W4379662020 cites W4310421926 @default.
- W4379662020 cites W4313418866 @default.
- W4379662020 doi "https://doi.org/10.1016/j.still.2023.105792" @default.
- W4379662020 hasPublicationYear "2023" @default.
- W4379662020 type Work @default.
- W4379662020 citedByCount "0" @default.
- W4379662020 crossrefType "journal-article" @default.
- W4379662020 hasAuthorship W4379662020A5003373205 @default.
- W4379662020 hasAuthorship W4379662020A5030032799 @default.
- W4379662020 hasAuthorship W4379662020A5057621155 @default.
- W4379662020 hasAuthorship W4379662020A5058974135 @default.
- W4379662020 hasAuthorship W4379662020A5065256469 @default.
- W4379662020 hasConcept C111919701 @default.
- W4379662020 hasConcept C11413529 @default.
- W4379662020 hasConcept C138673069 @default.
- W4379662020 hasConcept C153180895 @default.
- W4379662020 hasConcept C154945302 @default.
- W4379662020 hasConcept C155512373 @default.
- W4379662020 hasConcept C31972630 @default.
- W4379662020 hasConcept C41008148 @default.
- W4379662020 hasConcept C89600930 @default.
- W4379662020 hasConceptScore W4379662020C111919701 @default.
- W4379662020 hasConceptScore W4379662020C11413529 @default.
- W4379662020 hasConceptScore W4379662020C138673069 @default.
- W4379662020 hasConceptScore W4379662020C153180895 @default.
- W4379662020 hasConceptScore W4379662020C154945302 @default.
- W4379662020 hasConceptScore W4379662020C155512373 @default.
- W4379662020 hasConceptScore W4379662020C31972630 @default.
- W4379662020 hasConceptScore W4379662020C41008148 @default.
- W4379662020 hasConceptScore W4379662020C89600930 @default.
- W4379662020 hasLocation W43796620201 @default.
- W4379662020 hasOpenAccess W4379662020 @default.
- W4379662020 hasPrimaryLocation W43796620201 @default.
- W4379662020 hasRelatedWork W1669643531 @default.
- W4379662020 hasRelatedWork W2005437358 @default.
- W4379662020 hasRelatedWork W2008656436 @default.
- W4379662020 hasRelatedWork W2023558673 @default.
- W4379662020 hasRelatedWork W2039154422 @default.
- W4379662020 hasRelatedWork W2110230079 @default.
- W4379662020 hasRelatedWork W2122581818 @default.
- W4379662020 hasRelatedWork W2134924024 @default.
- W4379662020 hasRelatedWork W2517104666 @default.
- W4379662020 hasRelatedWork W2182382398 @default.