Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379743268> ?p ?o ?g. }
- W4379743268 abstract "Summary The power of artificial intelligence of things (AIoT) stems from adapting machine learning (ML) and artificial intelligence (AI) models into abundant intelligent IoT fields, based on a large data stream with different formats, sizes, and timestamps generated by massive numbers of heterogeneous sensors. On the one hand, data acquisition is the fundamental basis for any AIoT systems, but data sensed by massive IoT devices may be noisy and even contain adversarial samples. On the other hand, ensuring the efficiency and robustness in data acquisition is vitally important for data‐driven ML and AI. Recently, besides perceiving ability, the literature has witnessed great development of empowering things with learning and reasoning ability through deep learning models, including recurrent neural networks (RNNs) and/or convolutional neural network (CNNs). However, the existing works have one significant weakness: fail to explicitly leverage the geospatial implications and latent connections among sensors for high‐quality data acquisition and quality control. Graphs are intrinsically suitable for representing the dependencies and inter‐relationships between AIoT data sensing devices. Due to the ability of capturing the complex interactive relationships between nodes and producing high‐level representations of the graph input, graph neural networks (GNNs) have exploded onto various ML and AI fields, to learn from graph‐structured data. Our review covers the latest progresses in GNN for the fundamental atomic task of data acquisition in AIoT. Instead of surveying the abundant GNN schemes in vertically various IoT sensing applications, this paper systematically reviews the horizontal infrastructure that all AIoT fields should have, that is, AIoT data acquisition, based on GNN and other related emerging AI factors. Our contributions include the following aspects: Provide the latest progresses in GNN for the horizontal task of data acquisition in AIoT, propose the unified GNN pipeline based on encoder–decoder paradigm, and systematically categorize and summarize the emerging technologies helpful to address the issues in AIoT data acquisition, especially the noisy and adversarial data, and point out some future directions about GNN‐based AIoT data acquisition." @default.
- W4379743268 created "2023-06-08" @default.
- W4379743268 creator A5011877804 @default.
- W4379743268 creator A5024436877 @default.
- W4379743268 creator A5061363755 @default.
- W4379743268 creator A5072691800 @default.
- W4379743268 date "2023-06-06" @default.
- W4379743268 modified "2023-10-14" @default.
- W4379743268 title "Artificial intelligence of things (<scp>AIoT</scp>) data acquisition based on graph neural networks: A systematical review" @default.
- W4379743268 cites W2084163885 @default.
- W4379743268 cites W2101491865 @default.
- W4379743268 cites W2103018059 @default.
- W4379743268 cites W2116341502 @default.
- W4379743268 cites W2142047467 @default.
- W4379743268 cites W2565330852 @default.
- W4379743268 cites W2610034660 @default.
- W4379743268 cites W2744928333 @default.
- W4379743268 cites W2746791238 @default.
- W4379743268 cites W2808409763 @default.
- W4379743268 cites W2808771744 @default.
- W4379743268 cites W2879390606 @default.
- W4379743268 cites W2888878287 @default.
- W4379743268 cites W2899505729 @default.
- W4379743268 cites W2905588001 @default.
- W4379743268 cites W2914721378 @default.
- W4379743268 cites W2921491036 @default.
- W4379743268 cites W2938321354 @default.
- W4379743268 cites W2946933691 @default.
- W4379743268 cites W2963076818 @default.
- W4379743268 cites W2963405596 @default.
- W4379743268 cites W2964971928 @default.
- W4379743268 cites W2977942577 @default.
- W4379743268 cites W2979481854 @default.
- W4379743268 cites W2986514296 @default.
- W4379743268 cites W2995822546 @default.
- W4379743268 cites W2998313947 @default.
- W4379743268 cites W3001494301 @default.
- W4379743268 cites W3007157104 @default.
- W4379743268 cites W3011667710 @default.
- W4379743268 cites W3016632787 @default.
- W4379743268 cites W3030764521 @default.
- W4379743268 cites W3032086959 @default.
- W4379743268 cites W3037471945 @default.
- W4379743268 cites W3081255579 @default.
- W4379743268 cites W3090369187 @default.
- W4379743268 cites W3097300053 @default.
- W4379743268 cites W3102834148 @default.
- W4379743268 cites W3109340983 @default.
- W4379743268 cites W3118557229 @default.
- W4379743268 cites W3118813946 @default.
- W4379743268 cites W3123909522 @default.
- W4379743268 cites W3135550350 @default.
- W4379743268 cites W3144087169 @default.
- W4379743268 cites W3152893301 @default.
- W4379743268 cites W3155567600 @default.
- W4379743268 cites W3159040448 @default.
- W4379743268 cites W3160967194 @default.
- W4379743268 cites W3164803610 @default.
- W4379743268 cites W3173151551 @default.
- W4379743268 cites W3178367256 @default.
- W4379743268 cites W3181414820 @default.
- W4379743268 cites W3196581146 @default.
- W4379743268 cites W3198212763 @default.
- W4379743268 cites W3204453541 @default.
- W4379743268 cites W3209696639 @default.
- W4379743268 cites W4200580215 @default.
- W4379743268 cites W4210257598 @default.
- W4379743268 cites W4214630529 @default.
- W4379743268 cites W4289526864 @default.
- W4379743268 cites W4303426745 @default.
- W4379743268 cites W4308114370 @default.
- W4379743268 doi "https://doi.org/10.1002/cpe.7827" @default.
- W4379743268 hasPublicationYear "2023" @default.
- W4379743268 type Work @default.
- W4379743268 citedByCount "0" @default.
- W4379743268 crossrefType "journal-article" @default.
- W4379743268 hasAuthorship W4379743268A5011877804 @default.
- W4379743268 hasAuthorship W4379743268A5024436877 @default.
- W4379743268 hasAuthorship W4379743268A5061363755 @default.
- W4379743268 hasAuthorship W4379743268A5072691800 @default.
- W4379743268 hasConcept C104317684 @default.
- W4379743268 hasConcept C108583219 @default.
- W4379743268 hasConcept C111919701 @default.
- W4379743268 hasConcept C119857082 @default.
- W4379743268 hasConcept C132525143 @default.
- W4379743268 hasConcept C153083717 @default.
- W4379743268 hasConcept C154945302 @default.
- W4379743268 hasConcept C163985040 @default.
- W4379743268 hasConcept C185592680 @default.
- W4379743268 hasConcept C41008148 @default.
- W4379743268 hasConcept C50644808 @default.
- W4379743268 hasConcept C55493867 @default.
- W4379743268 hasConcept C63479239 @default.
- W4379743268 hasConcept C80444323 @default.
- W4379743268 hasConcept C81363708 @default.
- W4379743268 hasConceptScore W4379743268C104317684 @default.
- W4379743268 hasConceptScore W4379743268C108583219 @default.
- W4379743268 hasConceptScore W4379743268C111919701 @default.
- W4379743268 hasConceptScore W4379743268C119857082 @default.
- W4379743268 hasConceptScore W4379743268C132525143 @default.