Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379875212> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4379875212 abstract "Weeds compete for natural resources both in forest areas, harming the development of native vegetation, and in agricultural areas, affecting crop quality. The need then arises to classify these species, so that mechanical or chemical methods can be applied appropriately to contain the pests. This research presents the application and comparison of machine learning techniques, with the aim of automating the classification of images for agricultural challenges, such as the detection of defective seeds, and weeds and the category between these and native vegetation, while finally, the architecture of a convolutional neural network is presented. As a differential, the network's self-learning ability stands out, as images are captured in less than ideal conditions at varying heights and lighting levels in most cases. This research is expected to provide important information on artificial intelligence techniques that can be used in the classification of weed images, a factor that will contribute to the forestry and agricultural sector." @default.
- W4379875212 created "2023-06-09" @default.
- W4379875212 creator A5004131533 @default.
- W4379875212 creator A5010314892 @default.
- W4379875212 creator A5018444791 @default.
- W4379875212 creator A5071531046 @default.
- W4379875212 creator A5072321412 @default.
- W4379875212 creator A5082463987 @default.
- W4379875212 creator A5090475232 @default.
- W4379875212 date "2023-05-04" @default.
- W4379875212 modified "2023-09-30" @default.
- W4379875212 title "Application of Deep Neural Networks for Weed Detection and Classification" @default.
- W4379875212 cites W2021886222 @default.
- W4379875212 cites W2102605133 @default.
- W4379875212 cites W2509155366 @default.
- W4379875212 cites W2790979755 @default.
- W4379875212 cites W2805104607 @default.
- W4379875212 cites W2914490130 @default.
- W4379875212 cites W2962953743 @default.
- W4379875212 cites W2976292222 @default.
- W4379875212 cites W3136376090 @default.
- W4379875212 doi "https://doi.org/10.1109/icaaic56838.2023.10140235" @default.
- W4379875212 hasPublicationYear "2023" @default.
- W4379875212 type Work @default.
- W4379875212 citedByCount "0" @default.
- W4379875212 crossrefType "proceedings-article" @default.
- W4379875212 hasAuthorship W4379875212A5004131533 @default.
- W4379875212 hasAuthorship W4379875212A5010314892 @default.
- W4379875212 hasAuthorship W4379875212A5018444791 @default.
- W4379875212 hasAuthorship W4379875212A5071531046 @default.
- W4379875212 hasAuthorship W4379875212A5072321412 @default.
- W4379875212 hasAuthorship W4379875212A5082463987 @default.
- W4379875212 hasAuthorship W4379875212A5090475232 @default.
- W4379875212 hasConcept C108583219 @default.
- W4379875212 hasConcept C115961682 @default.
- W4379875212 hasConcept C118518473 @default.
- W4379875212 hasConcept C119857082 @default.
- W4379875212 hasConcept C142724271 @default.
- W4379875212 hasConcept C154945302 @default.
- W4379875212 hasConcept C166957645 @default.
- W4379875212 hasConcept C18903297 @default.
- W4379875212 hasConcept C205649164 @default.
- W4379875212 hasConcept C2775891814 @default.
- W4379875212 hasConcept C2776133958 @default.
- W4379875212 hasConcept C41008148 @default.
- W4379875212 hasConcept C50644808 @default.
- W4379875212 hasConcept C71924100 @default.
- W4379875212 hasConcept C75294576 @default.
- W4379875212 hasConcept C81363708 @default.
- W4379875212 hasConcept C84525736 @default.
- W4379875212 hasConcept C86803240 @default.
- W4379875212 hasConceptScore W4379875212C108583219 @default.
- W4379875212 hasConceptScore W4379875212C115961682 @default.
- W4379875212 hasConceptScore W4379875212C118518473 @default.
- W4379875212 hasConceptScore W4379875212C119857082 @default.
- W4379875212 hasConceptScore W4379875212C142724271 @default.
- W4379875212 hasConceptScore W4379875212C154945302 @default.
- W4379875212 hasConceptScore W4379875212C166957645 @default.
- W4379875212 hasConceptScore W4379875212C18903297 @default.
- W4379875212 hasConceptScore W4379875212C205649164 @default.
- W4379875212 hasConceptScore W4379875212C2775891814 @default.
- W4379875212 hasConceptScore W4379875212C2776133958 @default.
- W4379875212 hasConceptScore W4379875212C41008148 @default.
- W4379875212 hasConceptScore W4379875212C50644808 @default.
- W4379875212 hasConceptScore W4379875212C71924100 @default.
- W4379875212 hasConceptScore W4379875212C75294576 @default.
- W4379875212 hasConceptScore W4379875212C81363708 @default.
- W4379875212 hasConceptScore W4379875212C84525736 @default.
- W4379875212 hasConceptScore W4379875212C86803240 @default.
- W4379875212 hasLocation W43798752121 @default.
- W4379875212 hasOpenAccess W4379875212 @default.
- W4379875212 hasPrimaryLocation W43798752121 @default.
- W4379875212 hasRelatedWork W2084220915 @default.
- W4379875212 hasRelatedWork W2337926734 @default.
- W4379875212 hasRelatedWork W2766604260 @default.
- W4379875212 hasRelatedWork W2986507176 @default.
- W4379875212 hasRelatedWork W3189091156 @default.
- W4379875212 hasRelatedWork W3211546796 @default.
- W4379875212 hasRelatedWork W4311257506 @default.
- W4379875212 hasRelatedWork W4312192474 @default.
- W4379875212 hasRelatedWork W4320802194 @default.
- W4379875212 hasRelatedWork W4366224123 @default.
- W4379875212 isParatext "false" @default.
- W4379875212 isRetracted "false" @default.
- W4379875212 workType "article" @default.