Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379876589> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4379876589 abstract "Agricultural productivity is a key component of the Indian economy, for over 70% of India's agricultural people, agriculture is their main source of income. Plant diseases are the main reason why agricultural productivity has declined in both quality and volume. It is extremely difficult for a farmer to recognize and manage plant illnesses. The majority of plant illnesses manifest in the leaves of the affected plant. The illness that harms a plant is recognized using leaf photos. This proposed system focuses on certain deep-learning techniques to identify plant illnesses while also proposing which crop variety is optimal for production in that specific area. To make the proposed system more robust, proper training and testing have been shown with leaf datasets. The information set contains both healthy and unhealthy leaf images which are reported. First, the model suggests the best crop for the farmer using machine learning methods like Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Gaussian Naive Bayes (GNB), and Decision Tree (DT). Lastly, the disease is detected by using a deep learning technique called Convolutional Neural Network (CNN) by comparing the input image and trained image. This proposed system would be capable of solving real-world problems and be a better approach concerning other state-of-the-art methods." @default.
- W4379876589 created "2023-06-09" @default.
- W4379876589 creator A5025514468 @default.
- W4379876589 creator A5035744583 @default.
- W4379876589 creator A5037667386 @default.
- W4379876589 creator A5041283048 @default.
- W4379876589 creator A5092115670 @default.
- W4379876589 date "2023-05-04" @default.
- W4379876589 modified "2023-09-27" @default.
- W4379876589 title "Plant Disease Detection and Crop Recommendation using Deep Learning" @default.
- W4379876589 cites W2886330227 @default.
- W4379876589 cites W2891667148 @default.
- W4379876589 cites W3155966371 @default.
- W4379876589 cites W3168763766 @default.
- W4379876589 cites W3172933498 @default.
- W4379876589 cites W4207030304 @default.
- W4379876589 cites W4220873574 @default.
- W4379876589 cites W4243012519 @default.
- W4379876589 cites W4292825375 @default.
- W4379876589 cites W4307907980 @default.
- W4379876589 doi "https://doi.org/10.1109/icaaic56838.2023.10141294" @default.
- W4379876589 hasPublicationYear "2023" @default.
- W4379876589 type Work @default.
- W4379876589 citedByCount "0" @default.
- W4379876589 crossrefType "proceedings-article" @default.
- W4379876589 hasAuthorship W4379876589A5025514468 @default.
- W4379876589 hasAuthorship W4379876589A5035744583 @default.
- W4379876589 hasAuthorship W4379876589A5037667386 @default.
- W4379876589 hasAuthorship W4379876589A5041283048 @default.
- W4379876589 hasAuthorship W4379876589A5092115670 @default.
- W4379876589 hasConcept C108583219 @default.
- W4379876589 hasConcept C113174947 @default.
- W4379876589 hasConcept C118518473 @default.
- W4379876589 hasConcept C119857082 @default.
- W4379876589 hasConcept C12267149 @default.
- W4379876589 hasConcept C134306372 @default.
- W4379876589 hasConcept C154945302 @default.
- W4379876589 hasConcept C166957645 @default.
- W4379876589 hasConcept C205649164 @default.
- W4379876589 hasConcept C33923547 @default.
- W4379876589 hasConcept C41008148 @default.
- W4379876589 hasConcept C50644808 @default.
- W4379876589 hasConcept C52001869 @default.
- W4379876589 hasConcept C81363708 @default.
- W4379876589 hasConcept C84525736 @default.
- W4379876589 hasConceptScore W4379876589C108583219 @default.
- W4379876589 hasConceptScore W4379876589C113174947 @default.
- W4379876589 hasConceptScore W4379876589C118518473 @default.
- W4379876589 hasConceptScore W4379876589C119857082 @default.
- W4379876589 hasConceptScore W4379876589C12267149 @default.
- W4379876589 hasConceptScore W4379876589C134306372 @default.
- W4379876589 hasConceptScore W4379876589C154945302 @default.
- W4379876589 hasConceptScore W4379876589C166957645 @default.
- W4379876589 hasConceptScore W4379876589C205649164 @default.
- W4379876589 hasConceptScore W4379876589C33923547 @default.
- W4379876589 hasConceptScore W4379876589C41008148 @default.
- W4379876589 hasConceptScore W4379876589C50644808 @default.
- W4379876589 hasConceptScore W4379876589C52001869 @default.
- W4379876589 hasConceptScore W4379876589C81363708 @default.
- W4379876589 hasConceptScore W4379876589C84525736 @default.
- W4379876589 hasLocation W43798765891 @default.
- W4379876589 hasOpenAccess W4379876589 @default.
- W4379876589 hasPrimaryLocation W43798765891 @default.
- W4379876589 hasRelatedWork W2084779923 @default.
- W4379876589 hasRelatedWork W3127425528 @default.
- W4379876589 hasRelatedWork W3204641204 @default.
- W4379876589 hasRelatedWork W3211546796 @default.
- W4379876589 hasRelatedWork W4210726739 @default.
- W4379876589 hasRelatedWork W4283784365 @default.
- W4379876589 hasRelatedWork W4294067781 @default.
- W4379876589 hasRelatedWork W4311106074 @default.
- W4379876589 hasRelatedWork W4312192474 @default.
- W4379876589 hasRelatedWork W4320802194 @default.
- W4379876589 isParatext "false" @default.
- W4379876589 isRetracted "false" @default.
- W4379876589 workType "article" @default.