Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379927900> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4379927900 endingPage "e0286950" @default.
- W4379927900 startingPage "e0286950" @default.
- W4379927900 abstract "This paper seeks to develop an interpretable Machine Learning (ML) model for predicting the unconfined compressive strength (UCS) of cohesive soils stabilized with geopolymer at 28 days. Four models including Random Forest (RF), Artificial Neuron Network (ANN), Extreme Gradient Boosting (XGB), and Gradient Boosting (GB) are built. The database consists of 282 samples collected from the literature with three different types of cohesive soil stabilized with three geopolymer categories including Slag-based geopolymer cement, alkali-activated fly ash geopolymer and slag/fly ash-based geopolymer cement. The optimal model is selected by comparing their performances with each other. The values of hyperparameters are tuned by Particle Swarm Optimization (PSO) algorithm and K-Fold Cross Validation. Statistical indicators show the superior performance of the ANN model with three metrics performance such as coefficient of determination R2 = 0.9808, Root Mean Square Error RMSE = 0.8808 MPa and Mean Absolute Error MAE = 0.6344 MPa. In addition, a sensitivity analysis was performed to determine the influence of different input parameters on the UCS of cohesive soils stabilized with geopolymer. The order of feature effect can be ordered in descending order using the Shapley additive explanations (SHAP) value as follows: Ground granulated blast slag content (GGBFS) > Liquid limit (LL) > Alkali/Binder ratio (A/B) > Molarity (M) > Fly ash content (FA) > Na/Al > Si/Al. The ANN model can obtain the best accuracy using these seven inputs. LL has a negative correlation with the growth of unconfined compressive strength, whereas GGBFS has a positive correlation." @default.
- W4379927900 created "2023-06-09" @default.
- W4379927900 creator A5016640028 @default.
- W4379927900 creator A5059172603 @default.
- W4379927900 creator A5077200850 @default.
- W4379927900 date "2023-06-08" @default.
- W4379927900 modified "2023-09-27" @default.
- W4379927900 title "Developing interpretable machine learning-Shapley additive explanations model for unconfined compressive strength of cohesive soils stabilized with geopolymer" @default.
- W4379927900 cites W1678356000 @default.
- W4379927900 cites W2070493638 @default.
- W4379927900 cites W2088794999 @default.
- W4379927900 cites W2563010125 @default.
- W4379927900 cites W2788553894 @default.
- W4379927900 cites W3098695356 @default.
- W4379927900 cites W4220819342 @default.
- W4379927900 cites W4366982781 @default.
- W4379927900 doi "https://doi.org/10.1371/journal.pone.0286950" @default.
- W4379927900 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37289821" @default.
- W4379927900 hasPublicationYear "2023" @default.
- W4379927900 type Work @default.
- W4379927900 citedByCount "0" @default.
- W4379927900 crossrefType "journal-article" @default.
- W4379927900 hasAuthorship W4379927900A5016640028 @default.
- W4379927900 hasAuthorship W4379927900A5059172603 @default.
- W4379927900 hasAuthorship W4379927900A5077200850 @default.
- W4379927900 hasBestOaLocation W43799279001 @default.
- W4379927900 hasConcept C105795698 @default.
- W4379927900 hasConcept C11413529 @default.
- W4379927900 hasConcept C116973930 @default.
- W4379927900 hasConcept C128990827 @default.
- W4379927900 hasConcept C139945424 @default.
- W4379927900 hasConcept C159390177 @default.
- W4379927900 hasConcept C159750122 @default.
- W4379927900 hasConcept C159985019 @default.
- W4379927900 hasConcept C192562407 @default.
- W4379927900 hasConcept C2780092901 @default.
- W4379927900 hasConcept C2780837464 @default.
- W4379927900 hasConcept C30407753 @default.
- W4379927900 hasConcept C33819350 @default.
- W4379927900 hasConcept C33923547 @default.
- W4379927900 hasConcept C39432304 @default.
- W4379927900 hasConcept C85617194 @default.
- W4379927900 hasConcept C87343466 @default.
- W4379927900 hasConceptScore W4379927900C105795698 @default.
- W4379927900 hasConceptScore W4379927900C11413529 @default.
- W4379927900 hasConceptScore W4379927900C116973930 @default.
- W4379927900 hasConceptScore W4379927900C128990827 @default.
- W4379927900 hasConceptScore W4379927900C139945424 @default.
- W4379927900 hasConceptScore W4379927900C159390177 @default.
- W4379927900 hasConceptScore W4379927900C159750122 @default.
- W4379927900 hasConceptScore W4379927900C159985019 @default.
- W4379927900 hasConceptScore W4379927900C192562407 @default.
- W4379927900 hasConceptScore W4379927900C2780092901 @default.
- W4379927900 hasConceptScore W4379927900C2780837464 @default.
- W4379927900 hasConceptScore W4379927900C30407753 @default.
- W4379927900 hasConceptScore W4379927900C33819350 @default.
- W4379927900 hasConceptScore W4379927900C33923547 @default.
- W4379927900 hasConceptScore W4379927900C39432304 @default.
- W4379927900 hasConceptScore W4379927900C85617194 @default.
- W4379927900 hasConceptScore W4379927900C87343466 @default.
- W4379927900 hasIssue "6" @default.
- W4379927900 hasLocation W43799279001 @default.
- W4379927900 hasLocation W43799279002 @default.
- W4379927900 hasLocation W43799279003 @default.
- W4379927900 hasOpenAccess W4379927900 @default.
- W4379927900 hasPrimaryLocation W43799279001 @default.
- W4379927900 hasRelatedWork W2365075230 @default.
- W4379927900 hasRelatedWork W2944854327 @default.
- W4379927900 hasRelatedWork W2997443592 @default.
- W4379927900 hasRelatedWork W3094826507 @default.
- W4379927900 hasRelatedWork W3134239667 @default.
- W4379927900 hasRelatedWork W3157512436 @default.
- W4379927900 hasRelatedWork W3160696342 @default.
- W4379927900 hasRelatedWork W3172891032 @default.
- W4379927900 hasRelatedWork W4206258235 @default.
- W4379927900 hasRelatedWork W4220952191 @default.
- W4379927900 hasVolume "18" @default.
- W4379927900 isParatext "false" @default.
- W4379927900 isRetracted "false" @default.
- W4379927900 workType "article" @default.