Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379932599> ?p ?o ?g. }
- W4379932599 endingPage "129748" @default.
- W4379932599 startingPage "129748" @default.
- W4379932599 abstract "Wetland evapotranspiration (ET), which involves the land-atmosphere exchange of energy and water, is dynamic and affects the spatiotemporal distribution of water resources. However, due to the variability and complexity of wetlands, accurate estimation of patch-scale ET and its spatial variability remain insufficiently characterized. To overcome this challenge, an advanced unmanned aerial vehicle (UAV) technology was developed by combining the three-temperature (3T) model, which is robust to estimate transpiration and its spatial variability with UAV-based thermal infrared remote sensing, and Penman equation, which is commonly used to estimate open water evaporation. The combined approach was verified using the Bowen ratio system over a subalpine wetland. The results show that the proposed method is simple and applicable for estimating wetland ET and its spatial variability, with a determination coefficient (R2) of 0.93, mean absolute percentage error (MAPE) of 7.90%, root mean squared error (RMSE) of 0.05 mm h−1, and Nash-Sutcliffe efficiency (NSE) of 0.93. It depicts a large spatial variability in wetland ET with respect to surface vegetation characteristics, water regimes, meteorological factors, and larger transpiration rates than open water evaporation. With its limited inputs and no calibration requirements, the proposed method is concluded to be simple and to easily reveal the high temporal and spatial resolution characteristics of patch-scale ET and its components." @default.
- W4379932599 created "2023-06-09" @default.
- W4379932599 creator A5001153846 @default.
- W4379932599 creator A5017281218 @default.
- W4379932599 creator A5036312539 @default.
- W4379932599 creator A5040634935 @default.
- W4379932599 creator A5067281070 @default.
- W4379932599 creator A5071725756 @default.
- W4379932599 creator A5074455421 @default.
- W4379932599 creator A5079384626 @default.
- W4379932599 date "2023-05-01" @default.
- W4379932599 modified "2023-10-16" @default.
- W4379932599 title "High temporal and spatial resolution characteristics of evaporation, transpiration, and evapotranspiration from a subalpine wetland by an advanced UAV technology" @default.
- W4379932599 cites W1482648919 @default.
- W4379932599 cites W1797489833 @default.
- W4379932599 cites W1851533720 @default.
- W4379932599 cites W1965448210 @default.
- W4379932599 cites W1969498554 @default.
- W4379932599 cites W1969974566 @default.
- W4379932599 cites W1972519953 @default.
- W4379932599 cites W1974460336 @default.
- W4379932599 cites W1978448695 @default.
- W4379932599 cites W1978833849 @default.
- W4379932599 cites W1982998706 @default.
- W4379932599 cites W1984141699 @default.
- W4379932599 cites W1989616818 @default.
- W4379932599 cites W1998039980 @default.
- W4379932599 cites W1998943389 @default.
- W4379932599 cites W2005799922 @default.
- W4379932599 cites W2014329706 @default.
- W4379932599 cites W2014541920 @default.
- W4379932599 cites W2020134340 @default.
- W4379932599 cites W2024750460 @default.
- W4379932599 cites W2033904036 @default.
- W4379932599 cites W2037625304 @default.
- W4379932599 cites W2039384161 @default.
- W4379932599 cites W2040822958 @default.
- W4379932599 cites W2041218355 @default.
- W4379932599 cites W2044986770 @default.
- W4379932599 cites W2055886454 @default.
- W4379932599 cites W2061003790 @default.
- W4379932599 cites W2062626836 @default.
- W4379932599 cites W2062963406 @default.
- W4379932599 cites W2063280020 @default.
- W4379932599 cites W2065773237 @default.
- W4379932599 cites W2066179035 @default.
- W4379932599 cites W2069732630 @default.
- W4379932599 cites W2076247167 @default.
- W4379932599 cites W2076492491 @default.
- W4379932599 cites W2077289798 @default.
- W4379932599 cites W2078783038 @default.
- W4379932599 cites W2082298820 @default.
- W4379932599 cites W2089787906 @default.
- W4379932599 cites W2092899185 @default.
- W4379932599 cites W2094008879 @default.
- W4379932599 cites W2100844912 @default.
- W4379932599 cites W2102050931 @default.
- W4379932599 cites W2107505409 @default.
- W4379932599 cites W2114951651 @default.
- W4379932599 cites W2116033926 @default.
- W4379932599 cites W2118989103 @default.
- W4379932599 cites W2122914186 @default.
- W4379932599 cites W2140045967 @default.
- W4379932599 cites W2142458723 @default.
- W4379932599 cites W2142694456 @default.
- W4379932599 cites W2143276135 @default.
- W4379932599 cites W2143715729 @default.
- W4379932599 cites W2145886919 @default.
- W4379932599 cites W2153591710 @default.
- W4379932599 cites W2156877688 @default.
- W4379932599 cites W2161118360 @default.
- W4379932599 cites W2167453193 @default.
- W4379932599 cites W2172396214 @default.
- W4379932599 cites W2175600476 @default.
- W4379932599 cites W2264960077 @default.
- W4379932599 cites W2330089350 @default.
- W4379932599 cites W2372648315 @default.
- W4379932599 cites W2425112506 @default.
- W4379932599 cites W2734551231 @default.
- W4379932599 cites W2905969523 @default.
- W4379932599 cites W2912316947 @default.
- W4379932599 cites W2963647620 @default.
- W4379932599 cites W2969026366 @default.
- W4379932599 cites W2971266866 @default.
- W4379932599 cites W3000637664 @default.
- W4379932599 cites W3013865169 @default.
- W4379932599 cites W3030657237 @default.
- W4379932599 cites W3092764298 @default.
- W4379932599 cites W3126562212 @default.
- W4379932599 cites W3217336934 @default.
- W4379932599 cites W4221130773 @default.
- W4379932599 doi "https://doi.org/10.1016/j.jhydrol.2023.129748" @default.
- W4379932599 hasPublicationYear "2023" @default.
- W4379932599 type Work @default.
- W4379932599 citedByCount "1" @default.
- W4379932599 countsByYear W43799325992023 @default.
- W4379932599 crossrefType "journal-article" @default.
- W4379932599 hasAuthorship W4379932599A5001153846 @default.