Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379933400> ?p ?o ?g. }
- W4379933400 endingPage "101435" @default.
- W4379933400 startingPage "101435" @default.
- W4379933400 abstract "Tai Lake, the third largest freshwater lake in China, with a history of serious ecological pollution incidents. Lake water quality prediction techniques are essential to ensure an early emergency response capability for sustainable water management. Herein, an effective data-driven ensemble model was developed for predicting lake dissolved oxygen (DO) based on meteorological factors, water quality indicators and spatial information. First, variation mode decomposition (VMD) was used to decompose data into multiple modal components and classify them into feature terms and self terms. The feature terms were combined with relevant external features for multivariate prediction by convolutional neural network (CNN) and a bi-directional long and short-term memory (BiLSTM) with attention mechanism (AT), as well as using the whale optimization algorithm (WOA) to optimize the model hyperparameters. The self terms form a secondary modal decomposition model. Finally, the groupings were linearly summed to obtain outcome. The proposed model has the highest prediction accuracy in Tai Lake as well as the best prediction effect using 0.5 days as the period. This research also establishes a stepwise water temperature regulation mechanism, where the output of the target DO content value is achieved by changing the magnitude of water temperature and combining it with this prediction model, thereby strengthening the protection of water resources and the management of fishery production." @default.
- W4379933400 created "2023-06-09" @default.
- W4379933400 creator A5031773859 @default.
- W4379933400 creator A5040651615 @default.
- W4379933400 creator A5048181508 @default.
- W4379933400 creator A5071236925 @default.
- W4379933400 date "2023-06-01" @default.
- W4379933400 modified "2023-09-26" @default.
- W4379933400 title "A data-driven model for water quality prediction in Tai Lake, China, using secondary modal decomposition with multidimensional external features" @default.
- W4379933400 cites W1560739766 @default.
- W4379933400 cites W2000982976 @default.
- W4379933400 cites W2017249431 @default.
- W4379933400 cites W2082328103 @default.
- W4379933400 cites W2125056386 @default.
- W4379933400 cites W2175514636 @default.
- W4379933400 cites W2290883490 @default.
- W4379933400 cites W2308977555 @default.
- W4379933400 cites W2315555627 @default.
- W4379933400 cites W2479262485 @default.
- W4379933400 cites W2529588304 @default.
- W4379933400 cites W2574855520 @default.
- W4379933400 cites W2607318038 @default.
- W4379933400 cites W2740570963 @default.
- W4379933400 cites W2797714761 @default.
- W4379933400 cites W2802987982 @default.
- W4379933400 cites W2810987240 @default.
- W4379933400 cites W2884939968 @default.
- W4379933400 cites W2889230014 @default.
- W4379933400 cites W2893082324 @default.
- W4379933400 cites W2904896091 @default.
- W4379933400 cites W2911961846 @default.
- W4379933400 cites W2915284144 @default.
- W4379933400 cites W2919115771 @default.
- W4379933400 cites W2945207508 @default.
- W4379933400 cites W2953185075 @default.
- W4379933400 cites W2953222912 @default.
- W4379933400 cites W2965996457 @default.
- W4379933400 cites W2969685114 @default.
- W4379933400 cites W2973106087 @default.
- W4379933400 cites W2974349619 @default.
- W4379933400 cites W2986457312 @default.
- W4379933400 cites W3005619874 @default.
- W4379933400 cites W3008408706 @default.
- W4379933400 cites W3024269813 @default.
- W4379933400 cites W3037574654 @default.
- W4379933400 cites W3047143823 @default.
- W4379933400 cites W3086744239 @default.
- W4379933400 cites W3108628538 @default.
- W4379933400 cites W3119613993 @default.
- W4379933400 cites W3138729943 @default.
- W4379933400 cites W3156333129 @default.
- W4379933400 cites W3160017377 @default.
- W4379933400 cites W3164775596 @default.
- W4379933400 cites W3176787227 @default.
- W4379933400 cites W3189386762 @default.
- W4379933400 cites W3196499175 @default.
- W4379933400 cites W3206970530 @default.
- W4379933400 cites W3206980818 @default.
- W4379933400 cites W3209867903 @default.
- W4379933400 cites W4200116793 @default.
- W4379933400 cites W4205399065 @default.
- W4379933400 cites W4210476605 @default.
- W4379933400 cites W4212928315 @default.
- W4379933400 cites W4214706788 @default.
- W4379933400 cites W4220840055 @default.
- W4379933400 cites W4224325866 @default.
- W4379933400 cites W4281710902 @default.
- W4379933400 cites W4281714016 @default.
- W4379933400 cites W4283652339 @default.
- W4379933400 cites W4285792323 @default.
- W4379933400 cites W4292730325 @default.
- W4379933400 cites W4296343193 @default.
- W4379933400 cites W4311512460 @default.
- W4379933400 cites W4312589025 @default.
- W4379933400 cites W4313254960 @default.
- W4379933400 cites W4313828103 @default.
- W4379933400 cites W4313830014 @default.
- W4379933400 cites W4320498325 @default.
- W4379933400 cites W4361249171 @default.
- W4379933400 cites W4367047141 @default.
- W4379933400 doi "https://doi.org/10.1016/j.ejrh.2023.101435" @default.
- W4379933400 hasPublicationYear "2023" @default.
- W4379933400 type Work @default.
- W4379933400 citedByCount "1" @default.
- W4379933400 countsByYear W43799334002023 @default.
- W4379933400 crossrefType "journal-article" @default.
- W4379933400 hasAuthorship W4379933400A5031773859 @default.
- W4379933400 hasAuthorship W4379933400A5040651615 @default.
- W4379933400 hasAuthorship W4379933400A5048181508 @default.
- W4379933400 hasAuthorship W4379933400A5071236925 @default.
- W4379933400 hasBestOaLocation W43799334001 @default.
- W4379933400 hasConcept C119857082 @default.
- W4379933400 hasConcept C124101348 @default.
- W4379933400 hasConcept C124681953 @default.
- W4379933400 hasConcept C138885662 @default.
- W4379933400 hasConcept C153823671 @default.
- W4379933400 hasConcept C154945302 @default.
- W4379933400 hasConcept C185592680 @default.