Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379958669> ?p ?o ?g. }
- W4379958669 abstract "Processing incoming neural oscillatory signals in real-time and decoding from them relevant behavioral or pathological states is often required for adaptive Deep Brain Stimulation (aDBS) and other brain-computer interface (BCI) applications. Most current approaches rely on first extracting a set of predefined features, such as the power in canonical frequency bands or various time-domain features, and then training machine learning systems that use those predefined features as inputs and infer what the underlying brain state is at each given time point. However, whether this algorithmic approach is best suited to extract all available information contained within the neural waveforms remains an open question. Here, we aim to explore different algorithmic approaches in terms of their potential to yield improvements in decoding performance based on neural activity such as measured through local field potentials (LFPs) recordings or electroencephalography (EEG). In particular, we aim to explore the potential of end-to-end convolutional neural networks, and compare this approach with other machine learning methods that are based on extracting predefined feature sets. To this end, we implement and train a number of machine learning models, based either on manually constructed features or, in the case of deep learning-based models, on features directly learnt from the data. We benchmark these models on the task of identifying neural states using simulated data, which incorporates waveform features previously linked to physiological and pathological functions. We then assess the performance of these models in decoding movements based on local field potentials recorded from the motor thalamus of patients with essential tremor. Our findings, derived from both simulated and real patient data, suggest that end-to-end deep learning-based methods may surpass feature-based approaches, particularly when the relevant patterns within the waveform data are either unknown, difficult to quantify, or when there may be, from the point of view of the predefined feature extraction pipeline, unidentified features that could contribute to decoding performance. The methodologies proposed in this study might hold potential for application in adaptive deep brain stimulation (aDBS) and other brain-computer interface systems." @default.
- W4379958669 created "2023-06-09" @default.
- W4379958669 creator A5007188665 @default.
- W4379958669 creator A5007288355 @default.
- W4379958669 creator A5079703404 @default.
- W4379958669 date "2023-06-02" @default.
- W4379958669 modified "2023-09-25" @default.
- W4379958669 title "The potential of convolutional neural networks for identifying neural states based on electrophysiological signals: experiments on synthetic and real patient data" @default.
- W4379958669 cites W2101807845 @default.
- W4379958669 cites W2112575160 @default.
- W4379958669 cites W2165730296 @default.
- W4379958669 cites W2513000478 @default.
- W4379958669 cites W2606088148 @default.
- W4379958669 cites W2765216222 @default.
- W4379958669 cites W2765793020 @default.
- W4379958669 cites W2807007138 @default.
- W4379958669 cites W2808855215 @default.
- W4379958669 cites W2895229633 @default.
- W4379958669 cites W2941042790 @default.
- W4379958669 cites W3005454325 @default.
- W4379958669 cites W3005992334 @default.
- W4379958669 cites W3010219363 @default.
- W4379958669 cites W3038349332 @default.
- W4379958669 cites W3047251499 @default.
- W4379958669 cites W3102564565 @default.
- W4379958669 cites W3108215383 @default.
- W4379958669 cites W3120583211 @default.
- W4379958669 cites W3127678637 @default.
- W4379958669 cites W3164562427 @default.
- W4379958669 cites W3188181009 @default.
- W4379958669 cites W3189961351 @default.
- W4379958669 cites W3195894523 @default.
- W4379958669 cites W3215950319 @default.
- W4379958669 cites W4210458691 @default.
- W4379958669 cites W4220685091 @default.
- W4379958669 cites W4280579015 @default.
- W4379958669 cites W4282009015 @default.
- W4379958669 cites W4288036170 @default.
- W4379958669 cites W4294884775 @default.
- W4379958669 cites W4295312788 @default.
- W4379958669 cites W4306756967 @default.
- W4379958669 doi "https://doi.org/10.3389/fnhum.2023.1134599" @default.
- W4379958669 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37333834" @default.
- W4379958669 hasPublicationYear "2023" @default.
- W4379958669 type Work @default.
- W4379958669 citedByCount "0" @default.
- W4379958669 crossrefType "journal-article" @default.
- W4379958669 hasAuthorship W4379958669A5007188665 @default.
- W4379958669 hasAuthorship W4379958669A5007288355 @default.
- W4379958669 hasAuthorship W4379958669A5079703404 @default.
- W4379958669 hasBestOaLocation W43799586691 @default.
- W4379958669 hasConcept C108583219 @default.
- W4379958669 hasConcept C11413529 @default.
- W4379958669 hasConcept C117838684 @default.
- W4379958669 hasConcept C119857082 @default.
- W4379958669 hasConcept C13280743 @default.
- W4379958669 hasConcept C138885662 @default.
- W4379958669 hasConcept C153180895 @default.
- W4379958669 hasConcept C154945302 @default.
- W4379958669 hasConcept C169760540 @default.
- W4379958669 hasConcept C173201364 @default.
- W4379958669 hasConcept C185798385 @default.
- W4379958669 hasConcept C205649164 @default.
- W4379958669 hasConcept C2776401178 @default.
- W4379958669 hasConcept C40743351 @default.
- W4379958669 hasConcept C41008148 @default.
- W4379958669 hasConcept C41895202 @default.
- W4379958669 hasConcept C50644808 @default.
- W4379958669 hasConcept C522805319 @default.
- W4379958669 hasConcept C57273362 @default.
- W4379958669 hasConcept C81363708 @default.
- W4379958669 hasConcept C86803240 @default.
- W4379958669 hasConceptScore W4379958669C108583219 @default.
- W4379958669 hasConceptScore W4379958669C11413529 @default.
- W4379958669 hasConceptScore W4379958669C117838684 @default.
- W4379958669 hasConceptScore W4379958669C119857082 @default.
- W4379958669 hasConceptScore W4379958669C13280743 @default.
- W4379958669 hasConceptScore W4379958669C138885662 @default.
- W4379958669 hasConceptScore W4379958669C153180895 @default.
- W4379958669 hasConceptScore W4379958669C154945302 @default.
- W4379958669 hasConceptScore W4379958669C169760540 @default.
- W4379958669 hasConceptScore W4379958669C173201364 @default.
- W4379958669 hasConceptScore W4379958669C185798385 @default.
- W4379958669 hasConceptScore W4379958669C205649164 @default.
- W4379958669 hasConceptScore W4379958669C2776401178 @default.
- W4379958669 hasConceptScore W4379958669C40743351 @default.
- W4379958669 hasConceptScore W4379958669C41008148 @default.
- W4379958669 hasConceptScore W4379958669C41895202 @default.
- W4379958669 hasConceptScore W4379958669C50644808 @default.
- W4379958669 hasConceptScore W4379958669C522805319 @default.
- W4379958669 hasConceptScore W4379958669C57273362 @default.
- W4379958669 hasConceptScore W4379958669C81363708 @default.
- W4379958669 hasConceptScore W4379958669C86803240 @default.
- W4379958669 hasFunder F4320334626 @default.
- W4379958669 hasLocation W43799586691 @default.
- W4379958669 hasLocation W43799586692 @default.
- W4379958669 hasOpenAccess W4379958669 @default.
- W4379958669 hasPrimaryLocation W43799586691 @default.
- W4379958669 hasRelatedWork W2170780622 @default.
- W4379958669 hasRelatedWork W2738221750 @default.