Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379966198> ?p ?o ?g. }
- W4379966198 endingPage "118283" @default.
- W4379966198 startingPage "118283" @default.
- W4379966198 abstract "Quantitative prediction by unmanned aerial vehicle (UAV) remote sensing on water quality parameters (WQPs) including phosphorus, nitrogen, chemical oxygen demand (COD), biochemical oxygen demand (BOD), and chlorophyll a (Chl-a), total suspended solids (TSS), and turbidity provides a flexible and effective approach to monitor the variation in water quality. In this study, a deep learning-based method integrating graph convolution network (GCN), gravity model variant, and dual feedback machine involving parametric probability analysis and spatial distribution pattern analysis, named Graph Convolution Network with Superposition of Multi-point Effect (SMPE-GCN) has been developed to calculate concentrations of WQPs through UAV hyperspectral reflectance data on large scale efficiently. With an end-to-end structure, our proposed method has been applied to assisting environmental protection department to trace potential pollution sources in real time. The proposed method is trained on a real-world dataset and its effectiveness is validated on an equal amount of testing dataset with respect to three evaluation metrics including root of mean squared error (RMSE), mean absolute percent error (MAPE), and coefficient of determination (R2). The experimental results demonstrate that our proposed model achieves better performance in comparison with state-of-the-art baseline models in terms of RMSE, MAPE, and R2. The proposed method is applicable for quantifying seven various WQPs and has achieved good performance for each WQP. The resulting MAPE ranges from 7.16% to 10.96% and R2 ranges from 0.80 to 0.94 for all WQPs. This approach brings a novel and systematic insight into real-time quantitative water quality monitoring of urban rivers, and provides a unified framework for in-situ data acquisition, feature engineering, data conversion, and data modeling for further research. It provides fundamental support to assist environmental managers to efficiently monitor water quality of urban rivers." @default.
- W4379966198 created "2023-06-10" @default.
- W4379966198 creator A5024739229 @default.
- W4379966198 creator A5043667195 @default.
- W4379966198 creator A5057458570 @default.
- W4379966198 creator A5074824871 @default.
- W4379966198 date "2023-09-01" @default.
- W4379966198 modified "2023-10-16" @default.
- W4379966198 title "Monitor water quality through retrieving water quality parameters from hyperspectral images using graph convolution network with superposition of multi-point effect: A case study in Maozhou River" @default.
- W4379966198 cites W1149925075 @default.
- W4379966198 cites W1965852574 @default.
- W4379966198 cites W1972392539 @default.
- W4379966198 cites W1973525083 @default.
- W4379966198 cites W1975731452 @default.
- W4379966198 cites W1980997487 @default.
- W4379966198 cites W1981440291 @default.
- W4379966198 cites W1990872105 @default.
- W4379966198 cites W1998566514 @default.
- W4379966198 cites W1999915367 @default.
- W4379966198 cites W2004838342 @default.
- W4379966198 cites W2006072531 @default.
- W4379966198 cites W2015799298 @default.
- W4379966198 cites W2020208304 @default.
- W4379966198 cites W2023340755 @default.
- W4379966198 cites W2029436479 @default.
- W4379966198 cites W2029696454 @default.
- W4379966198 cites W2030071464 @default.
- W4379966198 cites W2033275608 @default.
- W4379966198 cites W2039756920 @default.
- W4379966198 cites W2042494736 @default.
- W4379966198 cites W2054200148 @default.
- W4379966198 cites W2061929593 @default.
- W4379966198 cites W2062793180 @default.
- W4379966198 cites W2063395966 @default.
- W4379966198 cites W2074309041 @default.
- W4379966198 cites W2082627840 @default.
- W4379966198 cites W2088794536 @default.
- W4379966198 cites W2090382476 @default.
- W4379966198 cites W2097785726 @default.
- W4379966198 cites W2098161697 @default.
- W4379966198 cites W2099140223 @default.
- W4379966198 cites W2108805510 @default.
- W4379966198 cites W2119511713 @default.
- W4379966198 cites W2129441650 @default.
- W4379966198 cites W2130817706 @default.
- W4379966198 cites W2131713496 @default.
- W4379966198 cites W2165856904 @default.
- W4379966198 cites W2172000864 @default.
- W4379966198 cites W2177412400 @default.
- W4379966198 cites W2326665389 @default.
- W4379966198 cites W2330221362 @default.
- W4379966198 cites W2482654751 @default.
- W4379966198 cites W2495430214 @default.
- W4379966198 cites W2520667800 @default.
- W4379966198 cites W2597900621 @default.
- W4379966198 cites W2738574859 @default.
- W4379966198 cites W2783443240 @default.
- W4379966198 cites W2787184083 @default.
- W4379966198 cites W2891576094 @default.
- W4379966198 cites W2912431399 @default.
- W4379966198 cites W2971752124 @default.
- W4379966198 cites W2995976122 @default.
- W4379966198 cites W3003812244 @default.
- W4379966198 cites W3004942926 @default.
- W4379966198 cites W3004968130 @default.
- W4379966198 cites W3011988525 @default.
- W4379966198 cites W3023852953 @default.
- W4379966198 cites W3025039077 @default.
- W4379966198 cites W3039171183 @default.
- W4379966198 cites W3040058291 @default.
- W4379966198 cites W3046452548 @default.
- W4379966198 cites W3115168990 @default.
- W4379966198 cites W3128201290 @default.
- W4379966198 cites W3130324371 @default.
- W4379966198 cites W3138154218 @default.
- W4379966198 cites W3138177712 @default.
- W4379966198 cites W3138775503 @default.
- W4379966198 cites W3146205005 @default.
- W4379966198 cites W3155355436 @default.
- W4379966198 cites W3158084709 @default.
- W4379966198 cites W3169451202 @default.
- W4379966198 cites W3170012267 @default.
- W4379966198 cites W3190381458 @default.
- W4379966198 cites W4200467817 @default.
- W4379966198 cites W4200562914 @default.
- W4379966198 cites W4210458595 @default.
- W4379966198 cites W4212912040 @default.
- W4379966198 cites W4214675223 @default.
- W4379966198 cites W4220981911 @default.
- W4379966198 cites W4221008988 @default.
- W4379966198 cites W4225248915 @default.
- W4379966198 cites W4232599294 @default.
- W4379966198 cites W4254044072 @default.
- W4379966198 cites W4281566005 @default.
- W4379966198 cites W4284967165 @default.
- W4379966198 cites W4293768951 @default.
- W4379966198 cites W4299804810 @default.
- W4379966198 cites W588879619 @default.