Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379980212> ?p ?o ?g. }
- W4379980212 endingPage "947" @default.
- W4379980212 startingPage "932" @default.
- W4379980212 abstract "Population-scale single-cell RNA-seq (scRNA-seq) data sets create unique opportunities for quantifying expression variation across individuals at the gene coexpression network level. Estimation of coexpression networks is well established for bulk RNA-seq; however, single-cell measurements pose novel challenges owing to technical limitations and noise levels of this technology. Gene-gene correlation estimates from scRNA-seq tend to be severely biased toward zero for genes with low and sparse expression. Here, we present Dozer to debias gene-gene correlation estimates from scRNA-seq data sets and accurately quantify network-level variation across individuals. Dozer corrects correlation estimates in the general Poisson measurement model and provides a metric to quantify genes measured with high noise. Computational experiments establish that Dozer estimates are robust to mean expression levels of the genes and the sequencing depths of the data sets. Compared with alternatives, Dozer results in fewer false-positive edges in the coexpression networks, yields more accurate estimates of network centrality measures and modules, and improves the faithfulness of networks estimated from separate batches of the data sets. We showcase unique analyses enabled by Dozer in two population-scale scRNA-seq applications. Coexpression network-based centrality analysis of multiple differentiating human induced pluripotent stem cell (iPSC) lines yields biologically coherent gene groups that are associated with iPSC differentiation efficiency. Application with population-scale scRNA-seq of oligodendrocytes from postmortem human tissues of Alzheimer's disease and controls uniquely reveals coexpression modules of innate immune response with distinct coexpression levels between the diagnoses. Dozer represents an important advance in estimating personalized coexpression networks from scRNA-seq data." @default.
- W4379980212 created "2023-06-10" @default.
- W4379980212 creator A5027290261 @default.
- W4379980212 creator A5061448314 @default.
- W4379980212 date "2023-06-01" @default.
- W4379980212 modified "2023-10-17" @default.
- W4379980212 title "Debiased personalized gene coexpression networks for population-scale scRNA-seq data" @default.
- W4379980212 cites W1618134065 @default.
- W4379980212 cites W1966327575 @default.
- W4379980212 cites W1979283544 @default.
- W4379980212 cites W1987971958 @default.
- W4379980212 cites W2006683252 @default.
- W4379980212 cites W2047547960 @default.
- W4379980212 cites W2060705109 @default.
- W4379980212 cites W2107018762 @default.
- W4379980212 cites W2118804183 @default.
- W4379980212 cites W2119590375 @default.
- W4379980212 cites W2130790725 @default.
- W4379980212 cites W2133863157 @default.
- W4379980212 cites W2157684072 @default.
- W4379980212 cites W2162543144 @default.
- W4379980212 cites W2179438025 @default.
- W4379980212 cites W2313540090 @default.
- W4379980212 cites W2600207590 @default.
- W4379980212 cites W2605611918 @default.
- W4379980212 cites W2606168351 @default.
- W4379980212 cites W2612502013 @default.
- W4379980212 cites W2732859689 @default.
- W4379980212 cites W2767823042 @default.
- W4379980212 cites W2783644856 @default.
- W4379980212 cites W2794458614 @default.
- W4379980212 cites W2804633924 @default.
- W4379980212 cites W2805619986 @default.
- W4379980212 cites W2888662179 @default.
- W4379980212 cites W2891866381 @default.
- W4379980212 cites W2902652978 @default.
- W4379980212 cites W2904527017 @default.
- W4379980212 cites W2951217100 @default.
- W4379980212 cites W2951381561 @default.
- W4379980212 cites W2952027905 @default.
- W4379980212 cites W2952382191 @default.
- W4379980212 cites W2966027120 @default.
- W4379980212 cites W2970272608 @default.
- W4379980212 cites W2979981308 @default.
- W4379980212 cites W2997280954 @default.
- W4379980212 cites W2997831639 @default.
- W4379980212 cites W3002417351 @default.
- W4379980212 cites W3004479572 @default.
- W4379980212 cites W3004833389 @default.
- W4379980212 cites W3010054644 @default.
- W4379980212 cites W3020538763 @default.
- W4379980212 cites W3080500495 @default.
- W4379980212 cites W3101697142 @default.
- W4379980212 cites W3107527779 @default.
- W4379980212 cites W3108714922 @default.
- W4379980212 cites W3110825127 @default.
- W4379980212 cites W3133413949 @default.
- W4379980212 cites W3134873297 @default.
- W4379980212 cites W3164156820 @default.
- W4379980212 cites W3165508487 @default.
- W4379980212 cites W3165591717 @default.
- W4379980212 cites W3179788429 @default.
- W4379980212 cites W4200416341 @default.
- W4379980212 cites W4221086336 @default.
- W4379980212 cites W4221108487 @default.
- W4379980212 cites W4225343266 @default.
- W4379980212 cites W4225981439 @default.
- W4379980212 cites W4226018745 @default.
- W4379980212 cites W4281555558 @default.
- W4379980212 cites W4315435709 @default.
- W4379980212 doi "https://doi.org/10.1101/gr.277363.122" @default.
- W4379980212 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37295843" @default.
- W4379980212 hasPublicationYear "2023" @default.
- W4379980212 type Work @default.
- W4379980212 citedByCount "1" @default.
- W4379980212 crossrefType "journal-article" @default.
- W4379980212 hasAuthorship W4379980212A5027290261 @default.
- W4379980212 hasAuthorship W4379980212A5061448314 @default.
- W4379980212 hasConcept C104317684 @default.
- W4379980212 hasConcept C105795698 @default.
- W4379980212 hasConcept C144024400 @default.
- W4379980212 hasConcept C149923435 @default.
- W4379980212 hasConcept C150194340 @default.
- W4379980212 hasConcept C162324750 @default.
- W4379980212 hasConcept C176217482 @default.
- W4379980212 hasConcept C18431079 @default.
- W4379980212 hasConcept C21547014 @default.
- W4379980212 hasConcept C2908647359 @default.
- W4379980212 hasConcept C33923547 @default.
- W4379980212 hasConcept C53811970 @default.
- W4379980212 hasConcept C54355233 @default.
- W4379980212 hasConcept C67339327 @default.
- W4379980212 hasConcept C70721500 @default.
- W4379980212 hasConcept C86803240 @default.
- W4379980212 hasConceptScore W4379980212C104317684 @default.
- W4379980212 hasConceptScore W4379980212C105795698 @default.
- W4379980212 hasConceptScore W4379980212C144024400 @default.
- W4379980212 hasConceptScore W4379980212C149923435 @default.