Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379984178> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4379984178 abstract "This paper constructs a model of power system and its defect detection network based on dense connection mechanism. In the feature extraction network, DenseNet-121 was optimized, Stem structure was added, and <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$mathbf{3}times mathbf{3}$</tex> small convolution kernel and dual channel feature extraction method were used to construct a dense connection feature extraction network with reduced spatial dimension. Aiming at the end-to-end recognition problem of power equipment, the Dense connected network-Stem object detection model is put forward in this paper as an end-to-end recognition model for power equipment. The image of power equipment is preprocessed by normalization and tagging to establish the model training data set. The experiment compares which deep feature extraction network is used for automatic feature extraction, uses regional suggestion network network instead of traditional candidate box generation method, and integrates the whole process of box regression and classification into one model to achieve end-to-end training of the whole network model. The proposed method can not only meet the requirements of high-precision identification of power equipment, but also complete the end-to-end automatic learning and training. Compared with traditional target detection algorithms, the detection performance is greatly improved." @default.
- W4379984178 created "2023-06-10" @default.
- W4379984178 creator A5005576826 @default.
- W4379984178 creator A5047015759 @default.
- W4379984178 creator A5049985297 @default.
- W4379984178 creator A5082483755 @default.
- W4379984178 date "2023-04-01" @default.
- W4379984178 modified "2023-10-06" @default.
- W4379984178 title "Automatic Inspection Method of Power System Based on Image Recognition" @default.
- W4379984178 cites W2789137862 @default.
- W4379984178 cites W2792274727 @default.
- W4379984178 cites W2805871501 @default.
- W4379984178 cites W2807888105 @default.
- W4379984178 cites W2909309670 @default.
- W4379984178 cites W2924873663 @default.
- W4379984178 cites W3002368185 @default.
- W4379984178 cites W3007098591 @default.
- W4379984178 cites W3098650625 @default.
- W4379984178 cites W3134639409 @default.
- W4379984178 cites W3139444603 @default.
- W4379984178 cites W3185410329 @default.
- W4379984178 doi "https://doi.org/10.1109/pandafpe57779.2023.10140689" @default.
- W4379984178 hasPublicationYear "2023" @default.
- W4379984178 type Work @default.
- W4379984178 citedByCount "1" @default.
- W4379984178 countsByYear W43799841782023 @default.
- W4379984178 crossrefType "proceedings-article" @default.
- W4379984178 hasAuthorship W4379984178A5005576826 @default.
- W4379984178 hasAuthorship W4379984178A5047015759 @default.
- W4379984178 hasAuthorship W4379984178A5049985297 @default.
- W4379984178 hasAuthorship W4379984178A5082483755 @default.
- W4379984178 hasConcept C108583219 @default.
- W4379984178 hasConcept C114614502 @default.
- W4379984178 hasConcept C124101348 @default.
- W4379984178 hasConcept C136886441 @default.
- W4379984178 hasConcept C138885662 @default.
- W4379984178 hasConcept C144024400 @default.
- W4379984178 hasConcept C153180895 @default.
- W4379984178 hasConcept C154945302 @default.
- W4379984178 hasConcept C19165224 @default.
- W4379984178 hasConcept C2776151529 @default.
- W4379984178 hasConcept C2776401178 @default.
- W4379984178 hasConcept C31258907 @default.
- W4379984178 hasConcept C33923547 @default.
- W4379984178 hasConcept C41008148 @default.
- W4379984178 hasConcept C41895202 @default.
- W4379984178 hasConcept C52622490 @default.
- W4379984178 hasConcept C74193536 @default.
- W4379984178 hasConcept C88796919 @default.
- W4379984178 hasConceptScore W4379984178C108583219 @default.
- W4379984178 hasConceptScore W4379984178C114614502 @default.
- W4379984178 hasConceptScore W4379984178C124101348 @default.
- W4379984178 hasConceptScore W4379984178C136886441 @default.
- W4379984178 hasConceptScore W4379984178C138885662 @default.
- W4379984178 hasConceptScore W4379984178C144024400 @default.
- W4379984178 hasConceptScore W4379984178C153180895 @default.
- W4379984178 hasConceptScore W4379984178C154945302 @default.
- W4379984178 hasConceptScore W4379984178C19165224 @default.
- W4379984178 hasConceptScore W4379984178C2776151529 @default.
- W4379984178 hasConceptScore W4379984178C2776401178 @default.
- W4379984178 hasConceptScore W4379984178C31258907 @default.
- W4379984178 hasConceptScore W4379984178C33923547 @default.
- W4379984178 hasConceptScore W4379984178C41008148 @default.
- W4379984178 hasConceptScore W4379984178C41895202 @default.
- W4379984178 hasConceptScore W4379984178C52622490 @default.
- W4379984178 hasConceptScore W4379984178C74193536 @default.
- W4379984178 hasConceptScore W4379984178C88796919 @default.
- W4379984178 hasLocation W43799841781 @default.
- W4379984178 hasOpenAccess W4379984178 @default.
- W4379984178 hasPrimaryLocation W43799841781 @default.
- W4379984178 hasRelatedWork W2110459882 @default.
- W4379984178 hasRelatedWork W2140205990 @default.
- W4379984178 hasRelatedWork W2151022383 @default.
- W4379984178 hasRelatedWork W2546942002 @default.
- W4379984178 hasRelatedWork W2588076546 @default.
- W4379984178 hasRelatedWork W2733060750 @default.
- W4379984178 hasRelatedWork W2773120646 @default.
- W4379984178 hasRelatedWork W3156786002 @default.
- W4379984178 hasRelatedWork W4317987726 @default.
- W4379984178 hasRelatedWork W2185993203 @default.
- W4379984178 isParatext "false" @default.
- W4379984178 isRetracted "false" @default.
- W4379984178 workType "article" @default.