Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379985774> ?p ?o ?g. }
- W4379985774 endingPage "1184" @default.
- W4379985774 startingPage "1167" @default.
- W4379985774 abstract "The advances made in wireless communication technology have led to efforts to improve the quality of reception, prevent poor connections and avoid disconnections between wireless and cellular devices. One of the most important steps toward preventing communication failures is to correctly estimate the received signal strength indicator (RSSI) of a wireless device. RSSI prediction is important for addressing various challenges such as localization, power control, link quality estimation, terminal connectivity estimation, and handover decisions. In this study, we compare different machine learning (ML) techniques that can be used to predict the received signal strength values of a device, given the received signal strength values of other devices in the region. We consider various ML methods, such as multi-layer ANN, K nearest neighbors, decision trees, random forest, and the K-means based method, for the prediction challenge. We checked the accuracy level of the learning process using a real dataset provided by a major national cellular operator. Our results show that the weighted K nearest neighbors algorithm, for K = 3 neighbors, achieved, on average, the most accurate RSSI predictions. We conclude that in environments where the size of data is relatively small, and data of close geographical points is available, a method that predicts the coverage of a point using the coverage near geographical points can be more successful and more accurate compared with other ML methods." @default.
- W4379985774 created "2023-06-10" @default.
- W4379985774 creator A5046834862 @default.
- W4379985774 creator A5070817036 @default.
- W4379985774 creator A5089688680 @default.
- W4379985774 creator A5092123221 @default.
- W4379985774 date "2023-07-20" @default.
- W4379985774 modified "2023-09-25" @default.
- W4379985774 title "Machine learning techniques for received signal strength indicator prediction" @default.
- W4379985774 cites W1961037478 @default.
- W4379985774 cites W1978396334 @default.
- W4379985774 cites W1978742041 @default.
- W4379985774 cites W2015247471 @default.
- W4379985774 cites W2024676290 @default.
- W4379985774 cites W2035465790 @default.
- W4379985774 cites W2060840175 @default.
- W4379985774 cites W2070560815 @default.
- W4379985774 cites W2076063813 @default.
- W4379985774 cites W2091005538 @default.
- W4379985774 cites W2093540532 @default.
- W4379985774 cites W2106660290 @default.
- W4379985774 cites W2133331265 @default.
- W4379985774 cites W2142137929 @default.
- W4379985774 cites W2152262272 @default.
- W4379985774 cites W2159680873 @default.
- W4379985774 cites W2169061815 @default.
- W4379985774 cites W2220629438 @default.
- W4379985774 cites W2329767912 @default.
- W4379985774 cites W2344144174 @default.
- W4379985774 cites W2432307921 @default.
- W4379985774 cites W2496586433 @default.
- W4379985774 cites W2533192410 @default.
- W4379985774 cites W2534984115 @default.
- W4379985774 cites W2734408173 @default.
- W4379985774 cites W2736340677 @default.
- W4379985774 cites W2739026601 @default.
- W4379985774 cites W2751642701 @default.
- W4379985774 cites W2770176403 @default.
- W4379985774 cites W2776252545 @default.
- W4379985774 cites W2792095278 @default.
- W4379985774 cites W2811473388 @default.
- W4379985774 cites W2890953776 @default.
- W4379985774 cites W2903328861 @default.
- W4379985774 cites W2911964244 @default.
- W4379985774 cites W2914476538 @default.
- W4379985774 cites W2919031495 @default.
- W4379985774 cites W2934397973 @default.
- W4379985774 cites W2950863887 @default.
- W4379985774 cites W2962883549 @default.
- W4379985774 cites W2998578058 @default.
- W4379985774 cites W3046581958 @default.
- W4379985774 cites W3127369521 @default.
- W4379985774 cites W4239510810 @default.
- W4379985774 cites W4301265533 @default.
- W4379985774 doi "https://doi.org/10.3233/ida-226750" @default.
- W4379985774 hasPublicationYear "2023" @default.
- W4379985774 type Work @default.
- W4379985774 citedByCount "0" @default.
- W4379985774 crossrefType "journal-article" @default.
- W4379985774 hasAuthorship W4379985774A5046834862 @default.
- W4379985774 hasAuthorship W4379985774A5070817036 @default.
- W4379985774 hasAuthorship W4379985774A5089688680 @default.
- W4379985774 hasAuthorship W4379985774A5092123221 @default.
- W4379985774 hasConcept C108037233 @default.
- W4379985774 hasConcept C111472728 @default.
- W4379985774 hasConcept C111852164 @default.
- W4379985774 hasConcept C111919701 @default.
- W4379985774 hasConcept C119857082 @default.
- W4379985774 hasConcept C124101348 @default.
- W4379985774 hasConcept C138885662 @default.
- W4379985774 hasConcept C154945302 @default.
- W4379985774 hasConcept C169258074 @default.
- W4379985774 hasConcept C176808163 @default.
- W4379985774 hasConcept C199360897 @default.
- W4379985774 hasConcept C2524010 @default.
- W4379985774 hasConcept C2779530757 @default.
- W4379985774 hasConcept C2779843651 @default.
- W4379985774 hasConcept C28719098 @default.
- W4379985774 hasConcept C33923547 @default.
- W4379985774 hasConcept C41008148 @default.
- W4379985774 hasConcept C555944384 @default.
- W4379985774 hasConcept C76155785 @default.
- W4379985774 hasConcept C79403827 @default.
- W4379985774 hasConcept C84525736 @default.
- W4379985774 hasConcept C98045186 @default.
- W4379985774 hasConceptScore W4379985774C108037233 @default.
- W4379985774 hasConceptScore W4379985774C111472728 @default.
- W4379985774 hasConceptScore W4379985774C111852164 @default.
- W4379985774 hasConceptScore W4379985774C111919701 @default.
- W4379985774 hasConceptScore W4379985774C119857082 @default.
- W4379985774 hasConceptScore W4379985774C124101348 @default.
- W4379985774 hasConceptScore W4379985774C138885662 @default.
- W4379985774 hasConceptScore W4379985774C154945302 @default.
- W4379985774 hasConceptScore W4379985774C169258074 @default.
- W4379985774 hasConceptScore W4379985774C176808163 @default.
- W4379985774 hasConceptScore W4379985774C199360897 @default.
- W4379985774 hasConceptScore W4379985774C2524010 @default.
- W4379985774 hasConceptScore W4379985774C2779530757 @default.