Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380029626> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4380029626 endingPage "5447" @default.
- W4380029626 startingPage "5447" @default.
- W4380029626 abstract "Abstract Background: Many cancers are known to involve a desmoplastic stromal reaction. While cancer-associated stroma (CAS) has long been appreciated histologically, single-cell molecular analyses have revealed its heterogeneity, and the cellular composition of CAS has been linked to prognosis in several cancer types, including NSCLC. While pathologists have sought to manually classify CAS based on collagen architecture or nuclear density, this approach has not sufficiently captured the heterogeneity of CAS. To this end, we have developed an artificial intelligence (AI)-based model to predict stromal composition in NSCLC from hematoxylin and eosin (H&E)-stained tissue Methods: We developed a convolutional neural network-based model to classify CAS as immature, mature, densely inflamed, densely fibroblastic, or elastosis. This model was trained using manual pathologist-derived annotations (N=3019) of H&E-stained whole slide images (WSIs) of PDAC obtained from the TCGA (N=126). This stromal subdivision model was deployed on H&E-stained LUAD (N=468) and LUSC (N=430) WSIs. Model performance was assessed by qualitative review by expert pathologists. Human interpretable features (HIFs) were extracted from the stromal subdivision model (e.g., proportional area of mature relative to total stroma) and were assessed to identify associations with overall survival (OS) using univariate Cox regression analysis after adjusting for age, sex, and tumor stage. Results: The stromal subdivision model successfully predicted areas of immature, mature, densely inflammatory, and densely fibrotic stroma, as well as elastosis, in LUAD and LUSC. In LUAD, higher combined proportional areas of mature and fibroblastic stroma relative to total cancer stroma was associated with poor OS (p=0.007), while higher combined proportional areas of densely inflamed stroma and elastosis relative to total cancer stroma was associated with improved OS (p=0.007). These findings were validated by stratified tertile analysis based on the corresponding risk direction. Notably, while the average stromal compositions did not differ significantly between NSCLC subtypes, the stromal HIFs were only prognostic in LUAD but not in LUSC. Conclusions: We developed a first of its kind model to characterize CAS subtypes in NSCLC tissue. Features extracted from this model are related to prognosis in LUAD, but not in LUSC, further confirming the importance of CAS to tumor biology and the importance of considering histologic subtypes. Work is ongoing to identify relationships between stromal HIFs and treatment response in NSCLC as well as other cancer indications. Citation Format: Fedaa Najdawi, Sandhya Srinivasan, Neel Patel, Michael G. Drage, Christian Kirkup, Chintan Parmar, Jacqueline Brosnan-Cashman, Michael Montalto, Andrew H. Beck, Archit Khosla, Ilan Wapinski, Ben Glass, Murray Resnick, Matthew Bronnimann. Artificial intelligence (AI)-based classification of stromal subtypes reveals associations between stromal composition and prognosis in NSCLC. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5447." @default.
- W4380029626 created "2023-06-10" @default.
- W4380029626 creator A5002751767 @default.
- W4380029626 creator A5004249170 @default.
- W4380029626 creator A5016607688 @default.
- W4380029626 creator A5017982502 @default.
- W4380029626 creator A5024687962 @default.
- W4380029626 creator A5030502605 @default.
- W4380029626 creator A5037275422 @default.
- W4380029626 creator A5040464409 @default.
- W4380029626 creator A5048642633 @default.
- W4380029626 creator A5062577740 @default.
- W4380029626 creator A5077659746 @default.
- W4380029626 creator A5078328411 @default.
- W4380029626 creator A5079058585 @default.
- W4380029626 creator A5080380454 @default.
- W4380029626 date "2023-04-04" @default.
- W4380029626 modified "2023-09-24" @default.
- W4380029626 title "Abstract 5447: Artificial intelligence (AI)-based classification of stromal subtypes reveals associations between stromal composition and prognosis in NSCLC" @default.
- W4380029626 doi "https://doi.org/10.1158/1538-7445.am2023-5447" @default.
- W4380029626 hasPublicationYear "2023" @default.
- W4380029626 type Work @default.
- W4380029626 citedByCount "0" @default.
- W4380029626 crossrefType "journal-article" @default.
- W4380029626 hasAuthorship W4380029626A5002751767 @default.
- W4380029626 hasAuthorship W4380029626A5004249170 @default.
- W4380029626 hasAuthorship W4380029626A5016607688 @default.
- W4380029626 hasAuthorship W4380029626A5017982502 @default.
- W4380029626 hasAuthorship W4380029626A5024687962 @default.
- W4380029626 hasAuthorship W4380029626A5030502605 @default.
- W4380029626 hasAuthorship W4380029626A5037275422 @default.
- W4380029626 hasAuthorship W4380029626A5040464409 @default.
- W4380029626 hasAuthorship W4380029626A5048642633 @default.
- W4380029626 hasAuthorship W4380029626A5062577740 @default.
- W4380029626 hasAuthorship W4380029626A5077659746 @default.
- W4380029626 hasAuthorship W4380029626A5078328411 @default.
- W4380029626 hasAuthorship W4380029626A5079058585 @default.
- W4380029626 hasAuthorship W4380029626A5080380454 @default.
- W4380029626 hasConcept C125473707 @default.
- W4380029626 hasConcept C126322002 @default.
- W4380029626 hasConcept C142724271 @default.
- W4380029626 hasConcept C143998085 @default.
- W4380029626 hasConcept C146357865 @default.
- W4380029626 hasConcept C151730666 @default.
- W4380029626 hasConcept C16930146 @default.
- W4380029626 hasConcept C204232928 @default.
- W4380029626 hasConcept C50382708 @default.
- W4380029626 hasConcept C52124034 @default.
- W4380029626 hasConcept C71924100 @default.
- W4380029626 hasConcept C86803240 @default.
- W4380029626 hasConceptScore W4380029626C125473707 @default.
- W4380029626 hasConceptScore W4380029626C126322002 @default.
- W4380029626 hasConceptScore W4380029626C142724271 @default.
- W4380029626 hasConceptScore W4380029626C143998085 @default.
- W4380029626 hasConceptScore W4380029626C146357865 @default.
- W4380029626 hasConceptScore W4380029626C151730666 @default.
- W4380029626 hasConceptScore W4380029626C16930146 @default.
- W4380029626 hasConceptScore W4380029626C204232928 @default.
- W4380029626 hasConceptScore W4380029626C50382708 @default.
- W4380029626 hasConceptScore W4380029626C52124034 @default.
- W4380029626 hasConceptScore W4380029626C71924100 @default.
- W4380029626 hasConceptScore W4380029626C86803240 @default.
- W4380029626 hasIssue "7_Supplement" @default.
- W4380029626 hasLocation W43800296261 @default.
- W4380029626 hasOpenAccess W4380029626 @default.
- W4380029626 hasPrimaryLocation W43800296261 @default.
- W4380029626 hasRelatedWork W2019220622 @default.
- W4380029626 hasRelatedWork W2036186213 @default.
- W4380029626 hasRelatedWork W2057399051 @default.
- W4380029626 hasRelatedWork W2097534329 @default.
- W4380029626 hasRelatedWork W2134995196 @default.
- W4380029626 hasRelatedWork W2336168361 @default.
- W4380029626 hasRelatedWork W2381576875 @default.
- W4380029626 hasRelatedWork W2412122492 @default.
- W4380029626 hasRelatedWork W2901169729 @default.
- W4380029626 hasRelatedWork W3005080812 @default.
- W4380029626 hasVolume "83" @default.
- W4380029626 isParatext "false" @default.
- W4380029626 isRetracted "false" @default.
- W4380029626 workType "article" @default.