Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380032176> ?p ?o ?g. }
- W4380032176 endingPage "32" @default.
- W4380032176 startingPage "17" @default.
- W4380032176 abstract "In this paper, to effectively strengthen quality of underwater image enhancement from both channel and spatial viewpoints, an adaptive channel attention-based deformable generative adversarial networks (ACADGAN) framework is established. Main contributions are as follows. 1) By virtue of multi-branch convolution architecture with dilated convolution mechanism, the adaptive channel attention (ACA) is devised, such that channel weight can be adaptively recalibrated, and thereby significantly contributing to preserving content features from channel viewpoint. 2) By augmenting offset position of sampling point with respect to convolution kernel, the deformable convolution network (DCN) is created, such that detailed information of underwater image can be dramatically retained from spatial aspect. 3) The ACADGAN scheme is eventually proposed by integrating ACA and DCN modules with a deep generative adversarial network. Comprehensive experiments demonstrate the remarkable effectiveness and superiority of the developed ACADGAN scheme." @default.
- W4380032176 created "2023-06-10" @default.
- W4380032176 creator A5024043450 @default.
- W4380032176 creator A5040965135 @default.
- W4380032176 creator A5065427465 @default.
- W4380032176 creator A5083724321 @default.
- W4380032176 date "2023-01-01" @default.
- W4380032176 modified "2023-10-16" @default.
- W4380032176 title "Adaptive Channel Attention-Based Deformable Generative Adversarial Network for Underwater Image Enhancement" @default.
- W4380032176 cites W1243671644 @default.
- W4380032176 cites W1915507140 @default.
- W4380032176 cites W1976263166 @default.
- W4380032176 cites W1981257078 @default.
- W4380032176 cites W1986431218 @default.
- W4380032176 cites W2001412060 @default.
- W4380032176 cites W2009071067 @default.
- W4380032176 cites W2012420567 @default.
- W4380032176 cites W2012602172 @default.
- W4380032176 cites W2041285268 @default.
- W4380032176 cites W2063076048 @default.
- W4380032176 cites W2081140338 @default.
- W4380032176 cites W2107297509 @default.
- W4380032176 cites W2111308925 @default.
- W4380032176 cites W2145023731 @default.
- W4380032176 cites W2147538606 @default.
- W4380032176 cites W2151103935 @default.
- W4380032176 cites W2181646778 @default.
- W4380032176 cites W2287129901 @default.
- W4380032176 cites W2344261455 @default.
- W4380032176 cites W2344646155 @default.
- W4380032176 cites W2439874220 @default.
- W4380032176 cites W2474516010 @default.
- W4380032176 cites W2591483287 @default.
- W4380032176 cites W2593414223 @default.
- W4380032176 cites W2596058005 @default.
- W4380032176 cites W2601564443 @default.
- W4380032176 cites W2613101547 @default.
- W4380032176 cites W2769949067 @default.
- W4380032176 cites W2783488367 @default.
- W4380032176 cites W2798898057 @default.
- W4380032176 cites W2922509574 @default.
- W4380032176 cites W2923724424 @default.
- W4380032176 cites W2962750014 @default.
- W4380032176 cites W2962793481 @default.
- W4380032176 cites W2964088115 @default.
- W4380032176 cites W2965669158 @default.
- W4380032176 cites W2971483169 @default.
- W4380032176 cites W3013529009 @default.
- W4380032176 cites W3022336857 @default.
- W4380032176 cites W3025719176 @default.
- W4380032176 cites W3027362665 @default.
- W4380032176 cites W3099562471 @default.
- W4380032176 cites W3198148928 @default.
- W4380032176 cites W4211258697 @default.
- W4380032176 doi "https://doi.org/10.1007/978-3-031-34899-0_2" @default.
- W4380032176 hasPublicationYear "2023" @default.
- W4380032176 type Work @default.
- W4380032176 citedByCount "0" @default.
- W4380032176 crossrefType "book-chapter" @default.
- W4380032176 hasAuthorship W4380032176A5024043450 @default.
- W4380032176 hasAuthorship W4380032176A5040965135 @default.
- W4380032176 hasAuthorship W4380032176A5065427465 @default.
- W4380032176 hasAuthorship W4380032176A5083724321 @default.
- W4380032176 hasConcept C114614502 @default.
- W4380032176 hasConcept C127162648 @default.
- W4380032176 hasConcept C154945302 @default.
- W4380032176 hasConcept C166957645 @default.
- W4380032176 hasConcept C175291020 @default.
- W4380032176 hasConcept C199360897 @default.
- W4380032176 hasConcept C205649164 @default.
- W4380032176 hasConcept C31258907 @default.
- W4380032176 hasConcept C31972630 @default.
- W4380032176 hasConcept C33923547 @default.
- W4380032176 hasConcept C41008148 @default.
- W4380032176 hasConcept C45347329 @default.
- W4380032176 hasConcept C50644808 @default.
- W4380032176 hasConcept C74193536 @default.
- W4380032176 hasConcept C98083399 @default.
- W4380032176 hasConceptScore W4380032176C114614502 @default.
- W4380032176 hasConceptScore W4380032176C127162648 @default.
- W4380032176 hasConceptScore W4380032176C154945302 @default.
- W4380032176 hasConceptScore W4380032176C166957645 @default.
- W4380032176 hasConceptScore W4380032176C175291020 @default.
- W4380032176 hasConceptScore W4380032176C199360897 @default.
- W4380032176 hasConceptScore W4380032176C205649164 @default.
- W4380032176 hasConceptScore W4380032176C31258907 @default.
- W4380032176 hasConceptScore W4380032176C31972630 @default.
- W4380032176 hasConceptScore W4380032176C33923547 @default.
- W4380032176 hasConceptScore W4380032176C41008148 @default.
- W4380032176 hasConceptScore W4380032176C45347329 @default.
- W4380032176 hasConceptScore W4380032176C50644808 @default.
- W4380032176 hasConceptScore W4380032176C74193536 @default.
- W4380032176 hasConceptScore W4380032176C98083399 @default.
- W4380032176 hasLocation W43800321761 @default.
- W4380032176 hasOpenAccess W4380032176 @default.
- W4380032176 hasPrimaryLocation W43800321761 @default.
- W4380032176 hasRelatedWork W1647058919 @default.
- W4380032176 hasRelatedWork W2030806501 @default.