Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380049524> ?p ?o ?g. }
- W4380049524 endingPage "5410" @default.
- W4380049524 startingPage "5410" @default.
- W4380049524 abstract "This study presents a framework for detecting mechanical damage in pipelines, focusing on generating simulated data and sampling to emulate distributed acoustic sensing (DAS) system responses. The workflow transforms simulated ultrasonic guided wave (UGW) responses into DAS or quasi-DAS system responses to create a physically robust dataset for pipeline event classification, including welds, clips, and corrosion defects. This investigation examines the effects of sensing systems and noise on classification performance, emphasizing the importance of selecting the appropriate sensing system for a specific application. The framework shows the robustness of different sensor number deployments to experimentally relevant noise levels, demonstrating its applicability in real-world scenarios where noise is present. Overall, this study contributes to the development of a more reliable and effective method for detecting mechanical damage to pipelines by emphasizing the generation and utilization of simulated DAS system responses for pipeline classification efforts. The results on the effects of sensing systems and noise on classification performance further enhance the robustness and reliability of the framework." @default.
- W4380049524 created "2023-06-10" @default.
- W4380049524 creator A5024859483 @default.
- W4380049524 creator A5025538058 @default.
- W4380049524 creator A5037367490 @default.
- W4380049524 creator A5049802249 @default.
- W4380049524 creator A5054205943 @default.
- W4380049524 creator A5073335858 @default.
- W4380049524 date "2023-06-07" @default.
- W4380049524 modified "2023-09-30" @default.
- W4380049524 title "Quasi-Distributed Fiber Sensor-Based Approach for Pipeline Health Monitoring: Generating and Analyzing Physics-Based Simulation Datasets for Classification" @default.
- W4380049524 cites W1169626544 @default.
- W4380049524 cites W1485858323 @default.
- W4380049524 cites W1965838475 @default.
- W4380049524 cites W1990769638 @default.
- W4380049524 cites W2003731425 @default.
- W4380049524 cites W2016939973 @default.
- W4380049524 cites W2078105685 @default.
- W4380049524 cites W2083148141 @default.
- W4380049524 cites W2111244811 @default.
- W4380049524 cites W2155895928 @default.
- W4380049524 cites W2176573217 @default.
- W4380049524 cites W2487692127 @default.
- W4380049524 cites W2540556405 @default.
- W4380049524 cites W2622538235 @default.
- W4380049524 cites W2746759066 @default.
- W4380049524 cites W2793209102 @default.
- W4380049524 cites W2811159792 @default.
- W4380049524 cites W2888812645 @default.
- W4380049524 cites W2921927106 @default.
- W4380049524 cites W2952048626 @default.
- W4380049524 cites W2966209250 @default.
- W4380049524 cites W2969752023 @default.
- W4380049524 cites W2979700798 @default.
- W4380049524 cites W2997838925 @default.
- W4380049524 cites W3003124284 @default.
- W4380049524 cites W3009082884 @default.
- W4380049524 cites W3014046978 @default.
- W4380049524 cites W3020988111 @default.
- W4380049524 cites W3092111043 @default.
- W4380049524 cites W3171587486 @default.
- W4380049524 cites W3195138078 @default.
- W4380049524 cites W3207648312 @default.
- W4380049524 cites W4229640632 @default.
- W4380049524 cites W4292171927 @default.
- W4380049524 doi "https://doi.org/10.3390/s23125410" @default.
- W4380049524 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37420576" @default.
- W4380049524 hasPublicationYear "2023" @default.
- W4380049524 type Work @default.
- W4380049524 citedByCount "0" @default.
- W4380049524 crossrefType "journal-article" @default.
- W4380049524 hasAuthorship W4380049524A5024859483 @default.
- W4380049524 hasAuthorship W4380049524A5025538058 @default.
- W4380049524 hasAuthorship W4380049524A5037367490 @default.
- W4380049524 hasAuthorship W4380049524A5049802249 @default.
- W4380049524 hasAuthorship W4380049524A5054205943 @default.
- W4380049524 hasAuthorship W4380049524A5073335858 @default.
- W4380049524 hasBestOaLocation W43800495241 @default.
- W4380049524 hasConcept C104317684 @default.
- W4380049524 hasConcept C115961682 @default.
- W4380049524 hasConcept C119857082 @default.
- W4380049524 hasConcept C120314980 @default.
- W4380049524 hasConcept C121332964 @default.
- W4380049524 hasConcept C124101348 @default.
- W4380049524 hasConcept C127413603 @default.
- W4380049524 hasConcept C154945302 @default.
- W4380049524 hasConcept C163258240 @default.
- W4380049524 hasConcept C175309249 @default.
- W4380049524 hasConcept C177212765 @default.
- W4380049524 hasConcept C185592680 @default.
- W4380049524 hasConcept C199360897 @default.
- W4380049524 hasConcept C200601418 @default.
- W4380049524 hasConcept C203718221 @default.
- W4380049524 hasConcept C24890656 @default.
- W4380049524 hasConcept C2776247918 @default.
- W4380049524 hasConcept C41008148 @default.
- W4380049524 hasConcept C43214815 @default.
- W4380049524 hasConcept C43521106 @default.
- W4380049524 hasConcept C55493867 @default.
- W4380049524 hasConcept C62520636 @default.
- W4380049524 hasConcept C63479239 @default.
- W4380049524 hasConcept C66938386 @default.
- W4380049524 hasConcept C77088390 @default.
- W4380049524 hasConcept C79403827 @default.
- W4380049524 hasConcept C86781634 @default.
- W4380049524 hasConcept C87717796 @default.
- W4380049524 hasConcept C99498987 @default.
- W4380049524 hasConceptScore W4380049524C104317684 @default.
- W4380049524 hasConceptScore W4380049524C115961682 @default.
- W4380049524 hasConceptScore W4380049524C119857082 @default.
- W4380049524 hasConceptScore W4380049524C120314980 @default.
- W4380049524 hasConceptScore W4380049524C121332964 @default.
- W4380049524 hasConceptScore W4380049524C124101348 @default.
- W4380049524 hasConceptScore W4380049524C127413603 @default.
- W4380049524 hasConceptScore W4380049524C154945302 @default.
- W4380049524 hasConceptScore W4380049524C163258240 @default.
- W4380049524 hasConceptScore W4380049524C175309249 @default.
- W4380049524 hasConceptScore W4380049524C177212765 @default.