Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380053103> ?p ?o ?g. }
- W4380053103 endingPage "103655" @default.
- W4380053103 startingPage "103655" @default.
- W4380053103 abstract "In this paper, we have investigated void growth in von Mises materials which contain realistic porous microstructures. For that purpose, we have performed finite element calculations of cubic unit-cells which are subjected to periodic boundary conditions and include porosity distributions representative of three additively manufactured metals. The initial void volume fraction in the calculations varies between 0.00564% and 1.75%, the number of actual voids between 14 and 5715, and the pores size from 2.3μm to 110μm. Several tests with different void sizes and positions have been generated for each of the three porous microstructures considered, and for each test we have performed several realizations with different spatial arrangement of the voids. The simulations have been carried out with random spatial distributions of pores and with clusters of the same size and different void densities. The macroscopic stress state in the unit-cell is controlled by prescribing constant triaxiality and Lode parameter throughout the loading. Calculations performed exchanging the loading directions for a given distribution of void sizes and positions have shown that the porous microstructure makes the macroscopic strain softening of the unit-cell (slightly) anisotropic. Moreover, the results obtained with the realistic porous microstructures have been compared with unit-cell calculations having an equivalent single central pore, and with calculations in which the material behavior is modeled with Gurson plasticity. It has been shown that both initial void volume fraction and spatial and size distribution of voids affect the macroscopic response of the porous aggregate and the void volume fraction evolution. Moreover, the calculations with random spatial distribution of voids have brought out that different tests of the same microstructure carry significant variations to the effective behavior of the porous aggregate, and that the interaction between neighboring pores dictates the volume evolution of individual voids, especially at higher macroscopic triaxiality. The calculations with clusters have shown that pores clustering promotes localization/coalescence due to increased interaction between the voids, which results in an increased growth rate of voids in clusters with large number of pores. Moreover, the results for the evolution of the distribution of plastic strains in the unit-cell have provided quantitative indications of the role of porous microstructure on the development of heterogeneous plastic strain fields which promote macroscopic strain softening. Namely, the accelerated growth rate of the plastic strains near the voids which indicates the onset of localization/coalescence has been shown to occur earlier as the number of voids in the microstructure increases." @default.
- W4380053103 created "2023-06-10" @default.
- W4380053103 creator A5055790219 @default.
- W4380053103 creator A5068743942 @default.
- W4380053103 creator A5075265065 @default.
- W4380053103 date "2023-08-01" @default.
- W4380053103 modified "2023-09-26" @default.
- W4380053103 title "Void growth in ductile materials with realistic porous microstructures" @default.
- W4380053103 cites W125429368 @default.
- W4380053103 cites W1712078958 @default.
- W4380053103 cites W1963500486 @default.
- W4380053103 cites W1964385165 @default.
- W4380053103 cites W1964857060 @default.
- W4380053103 cites W1967981435 @default.
- W4380053103 cites W1969112668 @default.
- W4380053103 cites W1969930163 @default.
- W4380053103 cites W1971437431 @default.
- W4380053103 cites W1974209218 @default.
- W4380053103 cites W1974664559 @default.
- W4380053103 cites W1977188519 @default.
- W4380053103 cites W1978715133 @default.
- W4380053103 cites W1986663099 @default.
- W4380053103 cites W1987430959 @default.
- W4380053103 cites W1988095790 @default.
- W4380053103 cites W1988202353 @default.
- W4380053103 cites W1999468163 @default.
- W4380053103 cites W2006608493 @default.
- W4380053103 cites W2006610315 @default.
- W4380053103 cites W2007648747 @default.
- W4380053103 cites W2009871834 @default.
- W4380053103 cites W2010178746 @default.
- W4380053103 cites W2012269656 @default.
- W4380053103 cites W2016463190 @default.
- W4380053103 cites W2019356394 @default.
- W4380053103 cites W2023291630 @default.
- W4380053103 cites W2025810734 @default.
- W4380053103 cites W2028240160 @default.
- W4380053103 cites W2031012667 @default.
- W4380053103 cites W2031772965 @default.
- W4380053103 cites W2033136193 @default.
- W4380053103 cites W2036803776 @default.
- W4380053103 cites W2039019236 @default.
- W4380053103 cites W2040726595 @default.
- W4380053103 cites W2043425930 @default.
- W4380053103 cites W2048626352 @default.
- W4380053103 cites W2049058352 @default.
- W4380053103 cites W2053570793 @default.
- W4380053103 cites W2053588125 @default.
- W4380053103 cites W2053623925 @default.
- W4380053103 cites W2053828895 @default.
- W4380053103 cites W2054424161 @default.
- W4380053103 cites W2055336346 @default.
- W4380053103 cites W2058359842 @default.
- W4380053103 cites W2060346595 @default.
- W4380053103 cites W2064867442 @default.
- W4380053103 cites W2065721961 @default.
- W4380053103 cites W2074587293 @default.
- W4380053103 cites W2076273150 @default.
- W4380053103 cites W2079241862 @default.
- W4380053103 cites W2085765414 @default.
- W4380053103 cites W2093783374 @default.
- W4380053103 cites W2120047094 @default.
- W4380053103 cites W2131492488 @default.
- W4380053103 cites W2153504150 @default.
- W4380053103 cites W2154940804 @default.
- W4380053103 cites W2157258353 @default.
- W4380053103 cites W2164030893 @default.
- W4380053103 cites W2164119502 @default.
- W4380053103 cites W2166126534 @default.
- W4380053103 cites W2194961415 @default.
- W4380053103 cites W2290644883 @default.
- W4380053103 cites W2481086620 @default.
- W4380053103 cites W2529469783 @default.
- W4380053103 cites W2567049593 @default.
- W4380053103 cites W2581563837 @default.
- W4380053103 cites W2620020778 @default.
- W4380053103 cites W2748118196 @default.
- W4380053103 cites W2754955020 @default.
- W4380053103 cites W2766861143 @default.
- W4380053103 cites W2779241099 @default.
- W4380053103 cites W2789347383 @default.
- W4380053103 cites W2883056715 @default.
- W4380053103 cites W2974942362 @default.
- W4380053103 cites W2995723114 @default.
- W4380053103 cites W3113334097 @default.
- W4380053103 cites W3127389689 @default.
- W4380053103 cites W3159799343 @default.
- W4380053103 cites W3172732398 @default.
- W4380053103 cites W3211780192 @default.
- W4380053103 cites W3211905072 @default.
- W4380053103 cites W4200533823 @default.
- W4380053103 cites W4223604631 @default.
- W4380053103 cites W4283026799 @default.
- W4380053103 cites W4283774389 @default.
- W4380053103 cites W4295185498 @default.
- W4380053103 cites W4321793798 @default.
- W4380053103 doi "https://doi.org/10.1016/j.ijplas.2023.103655" @default.
- W4380053103 hasPublicationYear "2023" @default.