Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380077677> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4380077677 endingPage "462" @default.
- W4380077677 startingPage "453" @default.
- W4380077677 abstract "The stomach and all of its appendages, which include the oesophagus, duodenum, small intestine, and large intestine, amongst others, all play a crucial function within this system. Stomach dysrhythmias, which are linked to problems with the movement of gastrointestinal contents, affect a significant number of individuals all over the globe. These problems include inappropriate digestion (dyspepsia), nausea (vomiting sensation) for no apparent reason, vomiting, abdominal pain, stomach ulcers, gastroesophageal reflux disease, and other disorders. During the process of finding the anomalies, it is possible that a number of techniques, including as imaging, endoscopy, electrogastrogram, and clinical analysis, will be used. Electrogastrography signals, also known as electrogastrograms (EGG), were captured using surface Ag/AgCl electrodes that were put over the stomach in 20 healthy persons before the data was gathered and pre-processed. The datasets were produced from these signals (8 Females and 12 Males). In addition to this, the datasets were obtained from 10 individuals who were suffering from various stomach illnesses (3 Females and 8 Males). In the stage known as “pre-processing,” which needs the obtained dataset to be treated in advance, any noise that was present in the signal is removed. In order to rid the data of any noise and increase the overall quality of the input data, a technique that is known as the Wiener filter is used. A technique known as Hybrid Grey Wolf Optimization with Particle Swarm Optimization is utilized in the process of feature selection. This algorithm is responsible for removing any extraneous data from the features that have been collected from the signal. The procedure is sped up as a result of this. The classifiers get the qualities that have been chosen as their input in order to carry out an analysis of the many stomach disorders, such as primary gastric lymphoma, gastrointestinal stromal tumour (GIST), and neuroendocrine tumor. This enables the classifiers to do the analysis (carcinoid). The Multi-class Feed Forward Neural Network Classifier (MCFFN) is used to carry out the classification process. This classifier provides the stages along with the classes. The accuracy, sensitivity, and specificity of the classification process are taken into account in the calculation of performance measures." @default.
- W4380077677 created "2023-06-10" @default.
- W4380077677 creator A5021284242 @default.
- W4380077677 creator A5030863316 @default.
- W4380077677 date "2023-03-01" @default.
- W4380077677 modified "2023-09-27" @default.
- W4380077677 title "Gastric Disorder Analysis Using Hybrid Optimization with Machine Learning" @default.
- W4380077677 cites W1964867524 @default.
- W4380077677 cites W2098422376 @default.
- W4380077677 cites W2136986309 @default.
- W4380077677 cites W2781583119 @default.
- W4380077677 cites W2793132293 @default.
- W4380077677 cites W2956571997 @default.
- W4380077677 doi "https://doi.org/10.1166/jbt.2023.3269" @default.
- W4380077677 hasPublicationYear "2023" @default.
- W4380077677 type Work @default.
- W4380077677 citedByCount "0" @default.
- W4380077677 crossrefType "journal-article" @default.
- W4380077677 hasAuthorship W4380077677A5021284242 @default.
- W4380077677 hasAuthorship W4380077677A5030863316 @default.
- W4380077677 hasConcept C115961682 @default.
- W4380077677 hasConcept C126322002 @default.
- W4380077677 hasConcept C154945302 @default.
- W4380077677 hasConcept C2776717482 @default.
- W4380077677 hasConcept C2776809568 @default.
- W4380077677 hasConcept C2779422922 @default.
- W4380077677 hasConcept C2780852908 @default.
- W4380077677 hasConcept C41008148 @default.
- W4380077677 hasConcept C71924100 @default.
- W4380077677 hasConcept C90924648 @default.
- W4380077677 hasConcept C99498987 @default.
- W4380077677 hasConceptScore W4380077677C115961682 @default.
- W4380077677 hasConceptScore W4380077677C126322002 @default.
- W4380077677 hasConceptScore W4380077677C154945302 @default.
- W4380077677 hasConceptScore W4380077677C2776717482 @default.
- W4380077677 hasConceptScore W4380077677C2776809568 @default.
- W4380077677 hasConceptScore W4380077677C2779422922 @default.
- W4380077677 hasConceptScore W4380077677C2780852908 @default.
- W4380077677 hasConceptScore W4380077677C41008148 @default.
- W4380077677 hasConceptScore W4380077677C71924100 @default.
- W4380077677 hasConceptScore W4380077677C90924648 @default.
- W4380077677 hasConceptScore W4380077677C99498987 @default.
- W4380077677 hasIssue "3" @default.
- W4380077677 hasLocation W43800776771 @default.
- W4380077677 hasOpenAccess W4380077677 @default.
- W4380077677 hasPrimaryLocation W43800776771 @default.
- W4380077677 hasRelatedWork W1975069782 @default.
- W4380077677 hasRelatedWork W2064217649 @default.
- W4380077677 hasRelatedWork W2066591864 @default.
- W4380077677 hasRelatedWork W2160976490 @default.
- W4380077677 hasRelatedWork W2412808708 @default.
- W4380077677 hasRelatedWork W2414659167 @default.
- W4380077677 hasRelatedWork W2429344784 @default.
- W4380077677 hasRelatedWork W2515217989 @default.
- W4380077677 hasRelatedWork W2588875793 @default.
- W4380077677 hasRelatedWork W2986846326 @default.
- W4380077677 hasVolume "13" @default.
- W4380077677 isParatext "false" @default.
- W4380077677 isRetracted "false" @default.
- W4380077677 workType "article" @default.